Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 14(2)2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33467759

ABSTRACT

Low-alloyed zirconium alloys are widely used in nuclear applications due to their low neutron absorption cross-section. These alloys, however, suffer from limited strength. Well-established guidelines for the development of Ti alloys were applied to design new two-phase ternary Zr alloys with improved mechanical properties. Zr-4Sn-4Nb and Zr-8Sn-4Nb alloys have been manufactured by vacuum arc melting, thermo-mechanically processed by annealing, forging, and aging to various microstructural conditions and thoroughly characterized. Detailed Scanning electron microscopy (SEM) analysis showed that the microstructural response of the alloys is rather similar to alpha + beta Ti alloys. Duplex microstructure containing primary alpha phase particles surrounded by lamellar alpha + beta microstructure can be achieved by thermal processing. Mechanical properties strongly depend on the previous treatment. Ultimate tensile strength exceeding 700 MPa was achieved exceeding the strength of commercial Zr alloys for nuclear applications by more than 50%. Such an improvement in strength more than compensates for the increased neutron absorption cross-section. This study aims to exploit the potential of alpha + beta Zr alloys for nuclear applications.

2.
Materials (Basel) ; 12(24)2019 Dec 17.
Article in English | MEDLINE | ID: mdl-31861121

ABSTRACT

Beta titanium alloy Ti-35Nb-6Ta-7Zr-0.7O (wt%) was developed as a material intended for the manufacturing of a stem of a hip joint replacement. This alloy contains only biocompatible elements and possesses a very high yield strength already in the cast condition (900 MPa). However, the porosity, large grain size and chemical inhomogeneity reduce the fatigue performance below the limits required for utilization in the desired application. Two methods of hot working, die forging and hot rolling, were used for processing of this alloy. Microstructural evolution, tensile properties and fatigue performance of the hot worked material were investigated and compared to the cast material. Microstructural observations revealed that porosity is removed in all hot-worked conditions and the grain size is significantly reduced when the area reduction exceeds 70%. Static tensile properties were improved by both processing methods and ultimate tensile strength (UTS) of 1200 MPa was achieved. Fatigue results were more reproducible in the hot rolled material due to better microstructural homogeneity, but forging leads to an improved fatigue performance. Fatigue limit of 400 MPa was achieved in the die-forged condition after 70% of area reduction and in the hot rolled condition after 86% of area reduction.

3.
Materials (Basel) ; 12(21)2019 Oct 31.
Article in English | MEDLINE | ID: mdl-31683515

ABSTRACT

A transformation pathway during thermal treatment of metastable ß Ti-15Mo alloy was investigated by in situ neutron diffraction. The evolution of individual phases α , ß , and ω was investigated during linear heating with two heating rates of 1.9 ∘ C / min and 5 ∘ C / min and during aging at 450 ∘ C . The results showed that with a sufficient heating rate (5 ∘ C / min in this case), the ω phase dissolves before the α phase forms. On the other hand, for the slower heating rate of 1.9 ∘ C / min , a small temperature interval of the coexistence of the α and ω phases was detected. Volume fractions and lattice parameters of all phases were also determined.

4.
Acta Crystallogr A Found Adv ; 75(Pt 5): 718-729, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31475916

ABSTRACT

Anomalous X-ray diffraction (AXRD) is a technique which makes use of effects occurring near the energy of an absorption edge of an element present in the studied sample. The intensity of the diffracted radiation exhibits an anomalous decrease when the primary beam energy matches the energy needed to excite an electron from an atomic orbital. The characteristics of this step are sensitive to the concentration of the `anomalous' element and its spatial distribution in the sample. In the present investigation, AXRD was employed to study ω particles in a metastable ß titanium alloy Ti-15Mo (in wt%). The experiments were done in an energy range around the Mo K edge at 20.0 keV, allowing investigation of the distribution of Mo in the material, which is rejected from the volume of ω particles during their diffusion-driven growth. This paper deals with diffuse scattering patterns around the (006)ß diffraction maximum. It was observed that different regions of the diffuse scattering exhibited different variations of diffracted intensity with the incident photon energy near the absorption edge. Numerical simulations of diffuse scattering patterns as well as of energy dependences of the scattered intensity were performed. It was found that the observed patterns and their dependence on the primary beam energy can be explained by taking into account (a) elastic deformation of the ß matrix arising from the presence of slightly misfitting ω particles and (b) the presence of a `cloud' of a higher Mo concentration around ω particles.

5.
Opt Express ; 25(19): 22971-22990, 2017 Sep 18.
Article in English | MEDLINE | ID: mdl-29041602

ABSTRACT

Microfacet-based BRDF models are a common tool to describe light scattering from glossy surfaces. Apart from their wide-ranging applications in optics, such models also play a significant role in computer graphics for photorealistic rendering purposes. In this paper, we mainly investigate the computer graphics aspect of this technology, and present a polarisation-aware brute force simulation of light interaction with both single and multiple layered micro-facet surfaces. Such surface models are commonly used in computer graphics, but the resulting BRDF is ultimately often only approximated. Recently, there has been work to try to make these approximations more accurate, and to better understand the behaviour of existing analytical models. However, these brute force verification attempts still emitted the polarisation state of light and, as we found out, this renders them prone to mis-estimating the shape of the resulting BRDF lobe for some particular material types, such as smooth layered dielectric surfaces. For these materials, non-polarising computations can mis-estimate some areas of the resulting BRDF shape by up to 23%. But we also identified some other material types, such as dielectric layers over rough conductors, for which the difference turned out to be almost negligible. The main contribution of our work is to clearly demonstrate that the effect of polarisation is important for accurate simulation of certain material types, and that there are also other common materials for which it can apparently be ignored. As this required a BRDF simulator that we could rely on, a secondary contribution is that we went to considerable lengths to validate our software. We compare it against a state-of-art model from graphics, a library from optics, and also against ellipsometric measurements of real surface samples.

6.
J Mech Behav Biomed Mater ; 71: 329-336, 2017 07.
Article in English | MEDLINE | ID: mdl-28399493

ABSTRACT

Low-modulus biomedical beta titanium alloys often suffer from low strength which limits their use as load-bearing orthopaedic implants. In this study, twelve different Ti-Nb-Zr-Ta based alloys alloyed with Fe, Si and O additions were prepared by arc melting and hot forging. The lowest elastic modulus (65GPa) was achieved in the benchmark TNTZ alloy consisting only of pure ß phase with low stability due to the 'proximity' to the ß to α'' martensitic transformation. Alloying by Fe and O significantly increased elastic modulus, which correlates with the electrons per atom ratio (e/a). Sufficient amount of Fe/O leads to increased yield stress, increased elongation to fracture and also to work hardening during deformation. A 20% increase in strength and a 20% decrease in the elastic modulus when compared to the common Ti-6Al-4V alloy was achieved in TNTZ-Fe-Si-O alloys, which proved to be suitable for biomedical use due to their favorable mechanical properties.


Subject(s)
Alloys/analysis , Biocompatible Materials/analysis , Elastic Modulus , Iron , Materials Testing , Niobium , Oxygen , Silicon , Tantalum , Titanium , Weight-Bearing , Zinc
7.
J Appl Crystallogr ; 50(Pt 2): 369-377, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-28381969

ABSTRACT

The twin distribution in topological insulators Bi2Te3 and Bi2Se3 was imaged by electron backscatter diffraction (EBSD) and scanning X-ray diffraction microscopy (SXRM). The crystal orientation at the surface, determined by EBSD, is correlated with the surface topography, which shows triangular pyramidal features with edges oriented in two different orientations rotated in the surface plane by 60°. The bulk crystal orientation is mapped out using SXRM by measuring the diffracted X-ray intensity of an asymmetric Bragg peak using a nano-focused X-ray beam scanned over the sample. By comparing bulk- and surface-sensitive measurements of the same area, buried twin domains not visible on the surface are identified. The lateral twin domain size is found to increase with the film thickness.

8.
Mater Sci Eng C Mater Biol Appl ; 60: 230-238, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26706526

ABSTRACT

Beta titanium alloys are promising materials for load-bearing orthopaedic implants due to their excellent corrosion resistance and biocompatibility, low elastic modulus and moderate strength. Metastable beta-Ti alloys can be hardened via precipitation of the alpha phase; however, this has an adverse effect on the elastic modulus. Small amounts of Fe (0-2 wt.%) and Si (0-1 wt.%) were added to Ti-35Nb-7Zr-6Ta (TNZT) biocompatible alloy to increase its strength in beta solution treated condition. Fe and Si additions were shown to cause a significant increase in tensile strength and also in the elastic modulus (from 65 GPa to 85 GPa). However, the elastic modulus of TNZT alloy with Fe and Si additions is still much lower than that of widely used Ti-6Al-4V alloy (115 GPa), and thus closer to that of the bone (10-30 GPa). Si decreases the elongation to failure, whereas Fe increases the uniform elongation thanks to increased work hardening. Primary human osteoblasts cultivated for 21 days on TNZT with 0.5Si+2Fe (wt.%) reached a significantly higher cell population density and significantly higher collagen I production than cells cultured on the standard Ti-6Al-4V alloy. In conclusion, the Ti-35Nb-7Zr-6Ta-2Fe-0.5Si alloy proves to be the best combination of elastic modulus, strength and also biological properties, which makes it a viable candidate for use in load-bearing implants.


Subject(s)
Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Titanium/chemistry , Alloys , Iron/chemistry , Niobium/chemistry , Osteogenesis/drug effects , Silicon Dioxide/chemistry
9.
Mater Sci Eng C Mater Biol Appl ; 39: 371-9, 2014 Jun 01.
Article in English | MEDLINE | ID: mdl-24863238

ABSTRACT

A novel approach of surface treatment of orthopaedic implants combining electric discharge machining (EDM), chemical milling (etching) and shot peening is presented in this study. Each of the three techniques have been used or proposed to be used as a favourable surface treatment of biomedical titanium alloys. But to our knowledge, the three techniques have not yet been used in combination. Surface morphology and chemistry were studied by scanning electron microscopy and X-ray photoelectron spectroscopy, respectively. Fatigue life of the material was determined and finally several in-vitro biocompatibility tests have been performed. EDM and subsequent chemical milling leads to a significant improvement of osteoblast proliferation and viability thanks to favourable surface morphology and increased oxygen content on the surface. Subsequent shot-peening significantly improves the fatigue endurance of the material. Material after proposed combined surface treatment possesses favourable mechanical properties and enhanced osteoblast proliferation. EDM treatment and EDM with shot peening also supported early osteogenic cell differentiation, manifested by a higher expression of collagen type I. The combined surface treatment is therefore promising for a range of applications in orthopaedics.


Subject(s)
Cell Proliferation/drug effects , Osteoblasts/drug effects , Titanium/chemistry , Alloys , Biocompatible Materials/chemistry , Cell Adhesion/drug effects , Cell Differentiation/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Fluorescent Antibody Technique , Humans , Microscopy, Electron, Scanning , Osteoblasts/cytology , Photoelectron Spectroscopy , Prostheses and Implants , Surface Properties , Titanium/pharmacology
10.
J Mech Behav Biomed Mater ; 7: 96-105, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22340689

ABSTRACT

This study investigated the properties of Ti-6Al-4V alloy after surface treatment by the electric discharge machining (EDM) process. The EDM process with high peak currents proved to induce surface macro-roughness and to cause chemical changes to the surface. Evaluations were made of the mechanical properties by means of tensile tests, and of surface roughness for different peak currents of the EDM process. The EDM process with peak current of 29 A was found to induce sufficient surface roughness, and to have a low adverse effect on tensile properties. The chemical changes were studied by scanning electron microscopy equipped with an energy dispersive X-ray analyser (EDX). The surface of the benchmark samples was obtained by plasma-spraying a titanium dioxide coating. An investigation of the biocompatibility of the surface-treated Ti-6Al-4V samples in cultures of human osteoblast-like MG 63 cells revealed that the samples modified by EDM provided better substrates for the adhesion, growth and viability of MG 63 cells than the TiO2 coated surface. Thus, EDM treatment can be considered as a promising surface modification to orthopaedic implants, in which good integration with the surrounding bone tissue is required.


Subject(s)
Alloys/chemistry , Biocompatible Materials/chemistry , Coated Materials, Biocompatible/chemistry , Prostheses and Implants , Titanium/chemistry , Bone and Bones , Humans , Materials Testing , Surface Properties
11.
J Mech Behav Biomed Mater ; 4(8): 1955-62, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22098894

ABSTRACT

Three different microstructures--equiaxed, bi-modal and coarse lamellar--are prepared from Ti-6Al-4V alloy. Electric discharge machining (EDM) with a high peak current (29 A) is performed in order to impose surface roughness and modify the chemical composition of the surface. Detailed scanning electron microscopy (SEM) investigation revealed a martensitic surface layer and subsurface heat affected zone (HAZ). EDX measurements showed carbon enriched remnants of the EDM process on the material surface. Rotating bending fatigue tests are undertaken for EDM processed samples for all three microstructures and also for electropolished-benchmark-samples. The fatigue performance is found to be rather poor and not particularly dependent on microstructure. The bi-modal microstructure shows a slightly superior high cycle fatigue performance. This performance can be further improved by a suitable heat treatment to an endurance limit of 200 MPa.


Subject(s)
Electricity , Mechanical Phenomena , Orthopedics/methods , Titanium/chemistry , Alloys , Hot Temperature , Materials Testing , Microscopy, Electron, Scanning , Surface Properties , Tensile Strength
12.
J Mech Behav Biomed Mater ; 4(3): 417-22, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21316629

ABSTRACT

Ti-6Al-4V hour-glass shaped rotating beam specimens with duplex microstructure were processed by electric discharge machining (EDM). A comparatively high peak current of 29A was utilized in order to increase surface roughness for improved osteointegration. High cycle fatigue (HCF) tests were performed in rotating beam loading (R=-1) on these EDM specimens and results were compared with electrolytically polished specimens serving as reference. As expected, the HCF performance of EDM specimens was inferior to the electrolytically polished specimens. A detailed study of fatigue crack nucleation and microcrack growth was carried out on failed specimens by SEM. The poor HCF strength of EDM specimens is explained by early crack nucleation due to the high notch sensitivity of Ti-6Al-4V. In addition, process-induced residual tensile stresses and microstructural effects may also account for the drastic loss in HCF performance relative to the electropolished baseline.


Subject(s)
Alloys/chemistry , Bone and Bones/cytology , Electricity , Mechanical Phenomena , Prostheses and Implants , Aluminum/chemistry , Cell Proliferation , Electric Impedance , Electrodes , Surface Properties , Temperature , Titanium/chemistry , Vanadium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...