Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Oncogene ; 36(27): 3807-3819, 2017 07 06.
Article in English | MEDLINE | ID: mdl-28263971

ABSTRACT

Epidermal growth factor receptor (EGFR) signaling is a known mediator of colorectal carcinogenesis. Studies have focused on the role of EGFR signaling in epithelial cells, although the exact nature of the role of EGFR in colorectal carcinogenesis remains a topic of debate. Here, we present evidence that EGFR signaling in myeloid cells, specifically macrophages, is critical for colon tumorigenesis in the azoxymethane-dextran sodium sulfate (AOM-DSS) model of colitis-associated carcinogenesis (CAC). In a human tissue microarray, colonic macrophages demonstrated robust EGFR activation in the pre-cancerous stages of colitis and dysplasia. Utilizing the AOM-DSS model, mice with a myeloid-specific deletion of Egfr had significantly decreased tumor multiplicity and burden, protection from high-grade dysplasia and significantly reduced colitis. Intriguingly, mice with gastrointestinal epithelial cell-specific Egfr deletion demonstrated no differences in tumorigenesis in the AOM-DSS model. The alterations in tumorigenesis in myeloid-specific Egfr knockout mice were accompanied by decreased macrophage, neutrophil and T-cell infiltration. Pro-tumorigenic M2 macrophage activation was diminished in myeloid-specific Egfr-deficient mice, as marked by decreased Arg1 and Il10 mRNA expression and decreased interleukin (IL)-4, IL10 and IL-13 protein levels. Surprisingly, diminished M1 macrophage activation was also detectable, as marked by significantly reduced Nos2 and Il1b mRNA levels and decreased interferon (IFN)-γ, tumor necrosis factor (TNF)-α and IL-1ß protein levels. The alterations in M1 and M2 macrophage activation were confirmed in bone marrow-derived macrophages from mice with the myeloid-specific Egfr knockout. The combined effect of restrained M1 and M2 macrophage activation resulted in decreased production of pro-angiogenic factors, CXCL1 and vascular endothelial growth factor (VEGF), and reduced CD31+ blood vessels, which likely contributed to protection from tumorigenesis. These data reveal that EGFR signaling in macrophages, but not in colonic epithelial cells, has a significant role in CAC. EGFR signaling in macrophages may prove to be an effective biomarker of CAC or target for chemoprevention in patients with inflammatory bowel disease.


Subject(s)
Carcinogenesis/metabolism , Colitis/pathology , Colonic Neoplasms/metabolism , ErbB Receptors/physiology , Macrophage Activation , Precancerous Conditions/metabolism , Animals , Carcinogenesis/immunology , Colon/immunology , Colon/pathology , Colonic Neoplasms/chemically induced , Colonic Neoplasms/immunology , Dextran Sulfate , Humans , Immunity, Innate , Macrophages/physiology , Male , Mice, Inbred C57BL , Mice, Transgenic , Neovascularization, Pathologic/immunology , Neovascularization, Pathologic/metabolism , Precancerous Conditions/immunology , Signal Transduction
2.
Oncogene ; 34(14): 1865-71, 2015 Apr 02.
Article in English | MEDLINE | ID: mdl-24837365

ABSTRACT

Helicobacter pylori is the strongest risk factor for the development of gastric cancer. Although the specific mechanisms by which this pathogen induces carcinogenesis have not been fully elucidated, high-expression interleukin (IL)-1ß alleles are associated with increased gastric cancer risk among H. pylori-infected persons. In addition, loss of matrix metalloproteinase 7 (MMP7) increases mucosal inflammation in mouse models of epithelial injury, and we have shown that gastric inflammation is increased in H. pylori-infected MMP7(-/-) C57BL/6 mice. In this report, we define mechanisms that underpin such responses and extend these results into a genetic model of MMP7 deficiency and gastric cancer. Wild-type (WT) or MMP7(-/-) C57BL/6 mice were challenged with broth alone as an uninfected control or the H. pylori strain PMSS1. All H. pylori-challenged mice were successfully colonized. As expected, H. pylori-infected MMP7(-/-) C57BL/6 mice exhibited a significant increase in gastric inflammation compared with uninfected or infected WT C57BL/6 animals. Loss of MMP7 resulted in M1 macrophage polarization within H. pylori-infected stomachs, as assessed by Luminex technology and immunohistochemistry, and macrophages isolated from infected MMP7-deficient mice expressed significantly higher levels of the M1 macrophage marker IL-1ß compared with macrophages isolated from WT mice. To extend these findings into a model of gastric cancer, hypergastrinemic WT INS-GAS or MMP7(-/-) INS-GAS mice were challenged with H. pylori strain PMSS1. Consistent with findings in the C57BL/6 model, H. pylori-infected MMP7-deficient INS-GAS mice exhibited a significant increase in gastric inflammation compared with either uninfected or infected WT INS-GAS mice. In addition, the incidence of gastric hyperplasia and dysplasia was significantly increased in H. pylori-infected MMP7(-/-) INS-GAS mice compared with infected WT INS-GAS mice, and loss of MMP7 promoted M1 macrophage polarization. These results suggest that MMP7 exerts a restrictive role on H. pylori-induced gastric injury and the development of premalignant lesions by suppressing M1 macrophage polarization.


Subject(s)
Gastritis/microbiology , Helicobacter Infections/pathology , Macrophages/immunology , Matrix Metalloproteinase 7/genetics , Stomach , Animals , Disease Models, Animal , Gastric Mucosa/cytology , Gastric Mucosa/immunology , Gastric Mucosa/microbiology , Gastritis/immunology , Helicobacter Infections/immunology , Helicobacter pylori/immunology , Helicobacter pylori/pathogenicity , Hyperplasia/genetics , Inflammation/immunology , Inflammation/microbiology , Macrophages/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Precancerous Conditions/immunology , Precancerous Conditions/microbiology , Stomach/immunology , Stomach/microbiology , Stomach/pathology , Stomach Neoplasms/immunology , Stomach Neoplasms/microbiology
3.
Oncogene ; 34(26): 3429-40, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25174398

ABSTRACT

Helicobacter pylori infection causes gastric cancer, the third leading cause of cancer death worldwide. More than half of the world's population is infected, making universal eradication impractical. Clinical trials suggest that antibiotic treatment only reduces gastric cancer risk in patients with non-atrophic gastritis (NAG), and is ineffective once preneoplastic lesions of multifocal atrophic gastritis (MAG) and intestinal metaplasia (IM) have occurred. Therefore, additional strategies for risk stratification and chemoprevention of gastric cancer are needed. We have implicated polyamines, generated by the rate-limiting enzyme ornithine decarboxylase (ODC), in gastric carcinogenesis. During H. pylori infection, the enzyme spermine oxidase (SMOX) is induced, which generates hydrogen peroxide from the catabolism of the polyamine spermine. Herein, we assessed the role of SMOX in the increased gastric cancer risk in Colombia associated with the Andean mountain region when compared with the low-risk region on the Pacific coast. When cocultured with gastric epithelial cells, clinical strains of H. pylori from the high-risk region induced more SMOX expression and oxidative DNA damage, and less apoptosis than low-risk strains. These findings were not attributable to differences in the cytotoxin-associated gene A oncoprotein. Gastric tissues from subjects from the high-risk region exhibited greater levels of SMOX and oxidative DNA damage by immunohistochemistry and flow cytometry, and this occurred in NAG, MAG and IM. In Mongolian gerbils, a prototype colonizing strain from the high-risk region induced more SMOX, DNA damage, dysplasia and adenocarcinoma than a colonizing strain from the low-risk region. Treatment of gerbils with either α-difluoromethylornithine, an inhibitor of ODC, or MDL 72527 (N(1),N(4)-Di(buta-2,3-dien-1-yl)butane-1,4-diamine dihydrochloride), an inhibitor of SMOX, reduced gastric dysplasia and carcinoma, as well as apoptosis-resistant cells with DNA damage. These data indicate that aberrant activation of polyamine-driven oxidative stress is a marker of gastric cancer risk and a target for chemoprevention.


Subject(s)
Adenocarcinoma , Helicobacter Infections/complications , Helicobacter pylori/physiology , Oxidoreductases Acting on CH-NH Group Donors/physiology , Stomach Neoplasms , Adenocarcinoma/epidemiology , Adenocarcinoma/genetics , Adenocarcinoma/microbiology , Adult , Animals , Cells, Cultured , Colombia/epidemiology , DNA Damage/genetics , Enzyme Induction , Gerbillinae , Helicobacter Infections/genetics , Humans , Hydrogen Peroxide/metabolism , Male , Middle Aged , Oxidative Stress/genetics , Risk Factors , Stomach Neoplasms/epidemiology , Stomach Neoplasms/genetics , Stomach Neoplasms/microbiology , Polyamine Oxidase
SELECTION OF CITATIONS
SEARCH DETAIL
...