Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Mol Biotechnol ; 2023 Jan 29.
Article in English | MEDLINE | ID: mdl-36709460

ABSTRACT

Varicella zoster virus (VZV) infection causes severe disease such as chickenpox, shingles, and postherpetic neuralgia, often leading to disability. Reactivation of latent VZV is associated with a decrease in specific cellular immunity in the elderly and in patients with immunodeficiency. However, due to the limited efficacy of existing therapy and the emergence of antiviral resistance, it has become necessary to develop new and effective antiviral drugs for the treatment of diseases caused by VZV, particularly in the setting of opportunistic infections. The goal of this work is to identify potent oxazole derivatives as anti-VZV agents by machine learning, followed by their synthesis and experimental validation. Predictive QSAR models were developed using the Online Chemical Modeling Environment (OCHEM). Data on compounds exhibiting antiviral activity were collected from the ChEMBL and uploaded in the OCHEM database. The predictive ability of the models was tested by cross-validation, giving coefficient of determination q2 = 0.87-0.9. The validation of the models using an external test set proves that the models can be used to predict the antiviral activity of newly designed and known compounds with reasonable accuracy within the applicability domain (q2 = 0.83-0.84). The models were applied to screen a virtual chemical library with expected activity of compounds against VZV. The 7 most promising oxazole derivatives were identified, synthesized, and tested. Two of them showed activity against the VZV Ellen strain upon primary in vitro antiviral screening. The synthesized compounds may represent an interesting starting point for further development of the oxazole derivatives against VZV. The developed models are available online at OCHEM http://ochem.eu/article/145978 and can be used to virtually screen for potential compounds with anti-VZV activity.

2.
Mol Pharm ; 20(1): 370-382, 2023 01 02.
Article in English | MEDLINE | ID: mdl-36484496

ABSTRACT

DNA viruses are responsible for many diseases in humans. Current treatments are often limited by toxicity, as in the case of cidofovir (CDV, Vistide), a compound used against cytomegalovirus (CMV) and adenovirus (AdV) infections. CDV is a polar molecule with poor bioavailability, and its overall clinical utility is limited by the high occurrence of acute nephrotoxicity. To circumvent these disadvantages, we designed nine CDV prodrug analogues. The prodrugs modulate the polarity of CDV with a long sulfonyl alkyl chain attached to one of the phosphono oxygens. We added capping groups to the end of the alkyl chain to minimize ß-oxidation and focus the metabolism on the phosphoester hydrolysis, thereby tuning the rate of this reaction by altering the alkyl chain length. With these modifications, the prodrugs have excellent aqueous solubility, optimized metabolic stability, increased cellular permeability, and rapid intracellular conversion to the pharmacologically active diphosphate form (CDV-PP). The prodrugs exhibited significantly enhanced antiviral potency against a wide range of DNA viruses in infected human foreskin fibroblasts. Single-dose intravenous and oral pharmacokinetic experiments showed that the compounds maintained plasma and target tissue levels of CDV well above the EC50 for 24 h. These experiments identified a novel lead candidate, NPP-669. NPP-669 demonstrated efficacy against CMV infections in mice and AdV infections in hamsters following oral (p.o.) dosing at a dose of 1 mg/kg BID and 0.1 mg/kg QD, respectively. We further showed that NPP-669 at 30 mg/kg QD did not exhibit histological signs of toxicity in mice or hamsters. These data suggest that NPP-669 is a promising lead candidate for a broad-spectrum antiviral compound.


Subject(s)
Cytomegalovirus Infections , Organophosphonates , Prodrugs , Mice , Humans , Animals , Antiviral Agents/pharmacokinetics , Biological Availability , Prodrugs/pharmacology , Cytosine , Cidofovir
3.
J Comput Aided Mol Des ; 35(12): 1177-1187, 2021 12.
Article in English | MEDLINE | ID: mdl-34766232

ABSTRACT

The problem of designing new antiviral drugs against Human Cytomegalovirus (HCMV) was addressed using the Online Chemical Modeling Environment (OCHEM). Data on compound antiviral activity to human organisms were collected from the literature and uploaded in the OCHEM database. The predictive ability of the regression models was tested through cross-validation, giving coefficient of determination q2 = 0.71-0.76. The validation of the models using an external test set proved that the models can be used to predict the activity of newly designed compounds with reasonable accuracy within the applicability domain (q2 = 0.70-0.74). The models were applied to screen a virtual chemical library of imidazole derivatives, which was designed to have antiviral activity. The six most promising compounds were identified, synthesized and their antiviral activities against HCMV were evaluated in vitro. However, only two of them showed some activity against the HCMV AD169 strain.


Subject(s)
Cytomegalovirus , Quantitative Structure-Activity Relationship , Anti-Bacterial Agents/chemistry , Antiviral Agents/pharmacology , Humans , Imidazoles/chemistry , Imidazoles/pharmacology , Machine Learning
4.
Antiviral Res ; 159: 104-112, 2018 11.
Article in English | MEDLINE | ID: mdl-30287226

ABSTRACT

The search for new compounds with a broad spectrum of antiviral activity is important and requires the evaluation of many compounds against several distinct viruses. Researchers attempting to develop new antiviral therapies for DNA virus infections currently use a variety of cell lines, assay conditions and measurement methods to determine in vitro drug efficacy, making it difficult to compare results from within the same laboratory as well as between laboratories. In this paper we describe a common assay platform designed to facilitate the parallel evaluation of antiviral activity against herpes simplex virus type 1, herpes simplex virus type 2, varicella-zoster virus, cytomegalovirus, vaccinia virus, cowpox virus, and adenovirus. The automated assays utilize monolayers of primary human foreskin fibroblast cells in 384-well plates as a common cell substrate and cytopathic effects and cytotoxicity are quantified with CellTiter-Glo. Data presented demonstrate that each of the assays is highly robust and yields data that are comparable to those from other traditional assays, such as plaque reduction assays. The assays proved to be both accurate and robust and afford an in depth assessment of antiviral activity against the diverse class of viruses with very small quantities of test compounds. In an accompanying paper, we present a standardized approach to evaluating antivirals against lymphotropic herpesviruses and polyomaviruses and together these studies revealed new activities for reference compounds. This approach has the potential to accelerate the development of broad spectrum therapies for the DNA viruses.


Subject(s)
Adenoviridae/drug effects , Antiviral Agents/pharmacology , Herpesvirus 1, Human/drug effects , Orthopoxvirus/drug effects , Viral Plaque Assay/standards , Cells, Cultured , Cytomegalovirus/drug effects , Cytopathogenic Effect, Viral , DNA Virus Infections/drug therapy , Fibroblasts , Herpesvirus 2, Human/drug effects , Herpesvirus 3, Human/drug effects , Humans
5.
J Med Chem ; 59(23): 10470-10478, 2016 12 08.
Article in English | MEDLINE | ID: mdl-27933957

ABSTRACT

Human papillomavirus (HPV) high-risk genotypes such as HPV-16 and HPV-18 cause the majority of anogenital tract carcinomas, including cervical cancer, the second most common malignancy in women worldwide. Currently there are no approved antiviral agents that reduce or eliminate HPV and reverse virus-associated pathology. We synthesized and evaluated several alkoxyalkyl acyclic nucleoside phosphonate diesters and identified octadecyloxyethyl benzyl 9-[(2-phosphonomethoxy)ethyl]guanine (ODE-Bn-PMEG) as an active compound which strongly inhibited transient amplification of HPV-11, -16, and -18 origin-containing plasmid DNA in transfected cells at concentrations well below its cytotoxic concentrations. ODE-Bn-PMEG demonstrated increased uptake in human foreskin fibroblast cells and was readily converted in vitro to the active antiviral metabolite, PMEG diphosphate. The P-chiral enantiomers of ODE-Bn-PMEG were obtained and appeared to have equivalent antiviral activities against HPV. ODE-Bn-PMEG is a promising candidate for the local treatment of HPV-16 and HPV-18 and other high-risk types, an important unmet medical need.


Subject(s)
Antiviral Agents/pharmacology , DNA, Viral/drug effects , Guanine/analogs & derivatives , Nucleic Acid Amplification Techniques , Organophosphonates/pharmacology , Papillomaviridae/drug effects , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Cell Line, Tumor , Dose-Response Relationship, Drug , Guanine/chemical synthesis , Guanine/chemistry , Guanine/pharmacology , HEK293 Cells , HIV/drug effects , Herpesvirus 2, Human/drug effects , Humans , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/virology , Molecular Structure , Organophosphonates/chemical synthesis , Organophosphonates/chemistry , Papillomaviridae/genetics , Structure-Activity Relationship , Virus Replication/drug effects
6.
Antimicrob Agents Chemother ; 57(8): 3518-27, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23669381

ABSTRACT

Methylenecyclopropane nucleosides have been reported to be active against many of the human herpesviruses. The most active compound of this class is cyclopropavir (CPV), which exhibits good antiviral activity against human cytomegalovirus (HCMV), Epstein-Barr virus, both variants of human herpesvirus 6, and human herpesvirus 8. CPV has two hydroxymethyl groups on the methylenecyclopropane ring, but analogs with a single hydroxymethyl group, such as the prototypical (S)-synguanol, are also active and exhibit a broader spectrum of antiviral activity that also includes hepatitis B virus and human immunodeficiency virus. Here, a large set of monohydroxymethyl compounds with ether and thioether substituents at the 6 position of the purine was synthesized and evaluated for antiviral activity against a range of human herpesviruses. Some of these analogs had a broader spectrum of antiviral activity than CPV, in that they also inhibited the replication of herpes simplex viruses 1 and 2 and varicella-zoster virus. Interestingly, the antiviral activity of these compounds appeared to be dependent on the activity of the HCMV UL97 kinase but was relatively unaffected by the absence of thymidine kinase activity in HSV. These data taken together indicate that the mechanism of action of these analogs is distinct from that of CPV. They also suggest that they might be useful as broad-spectrum antiherpesvirus agents and may be effective in the treatment of resistant virus infections.


Subject(s)
Antiviral Agents/chemical synthesis , Cyclopropanes/pharmacology , Cytomegalovirus/drug effects , Herpesviridae/drug effects , Antiviral Agents/pharmacology , Cell Proliferation/drug effects , Cells, Cultured , Cyclopropanes/chemistry , Cytomegalovirus/enzymology , DNA, Viral/analysis , Drug Evaluation, Preclinical , Guanine/analogs & derivatives , Guanine/pharmacology , Herpesviridae/physiology , Herpesvirus 4, Human/drug effects , Herpesvirus 4, Human/physiology , Herpesvirus 6, Human/drug effects , Herpesvirus 6, Human/physiology , Herpesvirus 8, Human/drug effects , Herpesvirus 8, Human/physiology , Humans , Phosphotransferases (Alcohol Group Acceptor)/chemistry , Phosphotransferases (Alcohol Group Acceptor)/genetics , Purine Nucleosides/chemical synthesis , Purine Nucleosides/pharmacology , Viral Plaque Assay , Virus Replication/drug effects
7.
Bioorg Med Chem ; 20(12): 3710-8, 2012 Jun 15.
Article in English | MEDLINE | ID: mdl-22607883

ABSTRACT

A second-generation series of substituted methylenecyclopropane nucleosides (MCPNs) has been synthesized and evaluated for antiviral activity against a panel of human herpesviruses, and for cytotoxicity. Although alkylated 2,6-diaminopurine analogs showed little antiviral activity, the compounds containing ether and thioether substituents at the 6-position of the purine did demonstrate potent and selective antiviral activity against several different human herpesviruses. In the 6-alkoxy series, antiviral activity depended on the length of the ether carbon chain, with the optimum chain length being about four carbon units long. For the corresponding thioethers, compounds containing secondary thioethers were more potent than those with primary thioethers.


Subject(s)
Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacology , Cyclopropanes/pharmacology , Fibroblasts/drug effects , Herpesviridae/drug effects , Nucleosides/pharmacology , Antiviral Agents/chemistry , Cell Line , Cyclopropanes/chemical synthesis , Cyclopropanes/chemistry , Dose-Response Relationship, Drug , Fibroblasts/virology , Herpesviridae/isolation & purification , Humans , Microbial Sensitivity Tests , Molecular Conformation , Nucleosides/chemical synthesis , Nucleosides/chemistry , Structure-Activity Relationship
8.
Antimicrob Agents Chemother ; 55(10): 4682-91, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21788463

ABSTRACT

Cyclopropavir (CPV) is active against human cytomegalovirus (CMV), as well as both variants of human herpesvirus 6 and human herpesvirus 8. The mechanism of action of CPV against CMV is similar to that of ganciclovir (GCV) in that it is phosphorylated initially by the CMV UL97 kinase, resulting in inhibition of viral DNA synthesis. Resistance to CPV maps to the UL97 kinase but is associated primarily with H520Q mutations and thus retains good antiviral activity against most GCV-resistant isolates. An examination of CMV-infected cultures treated with CPV revealed unusual cell morphology typically associated with the absence of UL97 kinase activity. A surrogate assay for UL97 kinase activity confirmed that CPV inhibited the activity of this enzyme and that its action was similar to the inhibition seen with maribavir (MBV) in this assay. Combination studies using real-time PCR indicated that, like MBV, CPV also antagonized the efficacy of GCV and were consistent with the observed inhibition of the UL97 kinase. Deep sequencing of CPV-resistant laboratory isolates identified a frameshift mutation in UL27, presumably to compensate for a loss of UL97 enzymatic activity. We conclude that the mechanism of action of CPV against CMV is complex and involves both the inhibition of DNA synthesis and the inhibition of the normal activity of the UL97 kinase.


Subject(s)
Antiviral Agents/pharmacology , Cyclopropanes/pharmacology , Cytomegalovirus/drug effects , Cytomegalovirus/enzymology , DNA, Viral , Guanine/analogs & derivatives , Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Animals , Base Sequence , Benzimidazoles/pharmacology , COS Cells , Cell Line , Chlorocebus aethiops , Cytomegalovirus/genetics , Cytomegalovirus/isolation & purification , DNA, Viral/biosynthesis , Drug Resistance, Viral/genetics , Frameshift Mutation , Ganciclovir/pharmacology , Guanine/pharmacology , Herpesvirus 6, Human/drug effects , Herpesvirus 8, Human/drug effects , High-Throughput Nucleotide Sequencing , Humans , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Ribonucleosides/pharmacology , Sequence Analysis, DNA
9.
Antimicrob Agents Chemother ; 53(12): 5251-8, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19770274

ABSTRACT

A series of 4'-thionucleosides were synthesized and evaluated for activities against orthopoxviruses and herpesviruses. We reported previously that one analog, 5-iodo-4'-thio-2'-deoxyuridine (4'-thioIDU), exhibits good activity both in vitro and in vivo against two orthopoxviruses. This compound also has good activity in cell culture against many of the herpesviruses. It inhibited the replication of herpes simplex virus type 1 (HSV-1), HSV-2, and varicella-zoster virus with 50% effective concentrations (EC(50)s) of 0.1, 0.5, and 2 microM, respectively. It also inhibited the replication of human cytomegalovirus (HCMV) with an EC(50) of 5.9 microM but did not selectively inhibit Epstein-Barr virus, human herpesvirus 6, or human herpesvirus 8. While acyclovir-resistant strains of HSV-1 and HSV-2 were comparatively resistant to 4'-thioIDU, it retained modest activity (EC(50)s of 4 to 12 microM) against these strains. Some ganciclovir-resistant strains of HCMV also exhibited reduced susceptibilities to the compound, which appeared to be related to the specific mutations in the DNA polymerase, consistent with the observed incorporation of the compound into viral DNA. The activity of 4'-thioIDU was also evaluated using mice infected intranasally with the MS strain of HSV-2. Although there was no decrease in final mortality rates, the mean length of survival after inoculation increased significantly (P < 0.05) for all animals receiving 4'-thioIDU. The findings from the studies presented here suggest that 4'-thioIDU is a good inhibitor of some herpesviruses, as well as orthopoxviruses, and this class of compounds warrants further study as a therapy for infections with these viruses.


Subject(s)
Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Herpesviridae Infections/drug therapy , Herpesviridae/drug effects , Pyrimidine Nucleosides/pharmacology , Pyrimidine Nucleosides/therapeutic use , Virus Replication/drug effects , Animals , Antiviral Agents/adverse effects , Antiviral Agents/chemistry , Cell Line , Cell Proliferation/drug effects , Cells, Cultured , DNA-Directed DNA Polymerase/genetics , DNA-Directed DNA Polymerase/physiology , Drug Resistance, Viral/drug effects , Drug Resistance, Viral/genetics , Fluorescent Antibody Technique, Indirect , Herpesviridae/genetics , Herpesviridae Infections/virology , Herpesvirus 1, Human/drug effects , Herpesvirus 1, Human/genetics , Herpesvirus 2, Human/drug effects , Herpesvirus 2, Human/genetics , Herpesvirus 6, Human/drug effects , Herpesvirus 6, Human/genetics , Herpesvirus 8, Human/drug effects , Herpesvirus 8, Human/genetics , Humans , Mice , Mice, Inbred BALB C , Microscopy, Fluorescence , Molecular Structure , Pyrimidine Nucleosides/chemical synthesis , Pyrimidine Nucleosides/chemistry , Viral Proteins/genetics , Viral Proteins/physiology
10.
Antiviral Res ; 83(3): 282-9, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19576248

ABSTRACT

Herpes simplex virus types 1 and 2 (HSV-1, HSV-2) infections are common, but can cause serious infections in neonates and the immunocompromised. Drugs currently used to treat cutaneous or genital HSV infections are effective in limiting disease, but the emergence of drug resistant viruses in immunocompromised individuals can be problematic. While the prophylactic oral treatment with antiviral drugs can reduce virus shedding and transmission, there is a need for topical microbicides that have the potential to limit sexual transmission of the virus. Previous reports demonstrated the antiviral activity of complex sulfated polysaccharides extracted from various species of marine algae and suggested that they interfered with the attachment of virions to host cells. Here, we evaluated the antiviral activity of extracts from Undaria pinnatifida, Splachnidium rugosum, Gigartina atropurpurea, and Plocamium cartilagineum against HSV-1 and HSV-2. These extracts exhibited good activity when added during the first hour of viral infection, but were ineffective if added later. Plaque reduction assays, when the extracts were added prior to viral inoculation, yielded EC(50) values that ranged from 2.5-3.6 microg/ml for HSV-1 and 0.7-6.6 microg/ml for HSV-2. None of the extracts exhibited significant toxicity in a neutral red uptake assay (IC(50) >100 microg/ml). Subsequent assays showed that the compounds had potent virucidal activity and were active at very low concentrations. We conclude that these extracts are nontoxic and effective virucidal agents that warrant further investigation to examine their potential role in the prevention of HSV infections of humans.


Subject(s)
Antiviral Agents/isolation & purification , Antiviral Agents/pharmacology , Eukaryota/chemistry , Herpesvirus 1, Human/drug effects , Herpesvirus 2, Human/drug effects , Polysaccharides/isolation & purification , Polysaccharides/pharmacology , Cells, Cultured , Fibroblasts/virology , Humans , Inhibitory Concentration 50 , Microbial Sensitivity Tests , Viral Plaque Assay , Virus Attachment/drug effects
11.
Antimicrob Agents Chemother ; 52(12): 4326-30, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18852272

ABSTRACT

Patients infected with human immunodeficiency virus (HIV) often suffer from herpesvirus infections as a result of immunosuppression. These infections can occur while patients are receiving antiretroviral therapy, and additional drugs required to treat their infection can adversely affect compliance. It would be useful to have antivirals with a broader spectrum of activity that included both HIV and the herpesviruses. We reported previously that alkoxyalkyl ester prodrugs of cidofovir are up to 3 orders of magnitude more active against herpesvirus replication and may be less toxic than the unmodified drug. To determine if this strategy would be effective for certain phosphonomethoxyethyl nucleoside phosphonates which are also active against HIV infections, the hexadecyloxypropyl (HDP) esters of 1-(phosphonomethoxyethyl)-cytosine, 1-(phosphonomethoxyethyl)-5-bromo-cytosine (PME-5BrC), 1-(phosphonomethoxyethyl)-5-fluoro-cytosine, 9-(phosphonomethoxyethyl)-2,6-diaminopurine (PME-DAP), and 9-(phosphonomethoxyethyl)-2-amino-6-cyclopropylaminopurine (PME-cPrDAP) were evaluated for activity against herpesvirus replication. The HDP esters were substantially more active than the unmodified acyclic nucleoside phosphonates, indicating that esterification with alkoxyalkyl groups increases the antiviral activity of many acyclic nucleoside phosphonates. The most interesting compounds included HDP-PME-cPrDAP and HDP-PME-DAP, which were 12- to 43-fold more active than the parent nucleoside phosphonates against herpes simplex virus and cytomegalovirus, and HDP-PME-cPrDAP and HDP-PME-5BrC which were especially active against Epstein-Barr virus. The results presented here indicate that HDP-esterified acyclic nucleoside phosphonates with antiviral activity against HIV also inhibit the replication of some herpesviruses and can extend the spectrum of activity for these compounds.


Subject(s)
Antiviral Agents/pharmacology , Esters/pharmacology , Herpesviridae/drug effects , Organophosphonates/pharmacology , Purine Nucleosides/pharmacology , Pyrimidine Nucleosides/pharmacology , Virus Replication/drug effects , Antiviral Agents/chemistry , Cell Line , Esters/chemistry , Herpesviridae/classification , Herpesviridae/physiology , Humans , Organophosphonates/chemistry , Purine Nucleosides/chemistry , Pyrimidine Nucleosides/chemistry , Viral Plaque Assay
12.
Antimicrob Agents Chemother ; 51(5): 1795-803, 2007 May.
Article in English | MEDLINE | ID: mdl-17325220

ABSTRACT

The antiviral activity of a new series of thymidine analogs was determined against vaccinia virus (VV), cowpox virus (CV), herpes simplex virus, and varicella-zoster virus. Several compounds were identified that had good activity against each of the viruses, including a set of novel 5-substituted deoxyuridine analogs. To investigate the possibility that these drugs might be phosphorylated preferentially by the viral thymidine kinase (TK) homologs, the antiviral activities of these compounds were also assessed using TK-deficient strains of some of these viruses. Some of these compounds were shown to be much less effective in the absence of a functional TK gene in CV, which was unexpected given the high degree of amino acid identity between this enzyme and its cellular homolog. This unanticipated result suggested that the CV TK was important in the mechanism of action of these compounds and also that it might phosphorylate a wider variety of substrates than other type II enzymes. To confirm these data, we expressed the VV TK and human TK1 in bacteria and isolated the purified enzymes. Enzymatic assays demonstrated that the viral TK could efficiently phosphorylate many of these compounds, whereas most of the compounds were very poor substrates for the cellular kinase, TK1. Thus, the specific phosphorylation of these compounds by the viral kinase may be sufficient to explain the TK dependence. This unexpected result suggests that selective phosphorylation by the viral kinase may be a promising new approach in the discovery of highly selective inhibitors of orthopoxvirus replication.


Subject(s)
Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Thymidine Kinase/metabolism , Vaccinia virus/enzymology , Amino Acid Sequence , Herpesviridae/drug effects , Humans , Kinetics , Molecular Sequence Data , Orthopoxvirus/drug effects , Phosphorylation , Thymidine Kinase/chemistry
13.
Antiviral Res ; 71(1): 1-6, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16530858

ABSTRACT

Orthopoxviruses and herpesviruses are both large enveloped DNA viruses, yet these virus families exhibit very different susceptibilities to antiviral drugs. We investigated the activation of nucleoside analogs by the types I and II thymidine kinase (TK) homologs expressed by herpes simplex virus type 1 (HSV-1) and cowpox virus (CV). Antiviral activity against TK(-) and TK(+) strains of HSV-1 and CV was determined, and the ratio of the EC(50) values was used as a measurement of TK dependence. As to HSV-1, most of the selected compounds were markedly less effective against the TK(-) strains, suggesting that this enzyme was required for the activation of these nucleoside analogs. This differs from the results for CV where only idoxuridine and bromodeoxyuridine appeared to be activated, putatively by the type II TK expressed by this virus. These data confirm that the type II TK encoded by CV exhibits a more limited substrate specificity than the type I TK encoded by HSV-1. These data suggest that the inefficient activation of nucleoside analogs by the orthopoxvirus TK significantly limits their activity. Additional screening against orthopoxviruses will be required to identify nucleoside analogs that are efficiently activated by their type II TK.


Subject(s)
Antiviral Agents/pharmacology , Cowpox virus/enzymology , Cowpox virus/genetics , Nucleotides/pharmacology , Simplexvirus/enzymology , Simplexvirus/genetics , Thymidine Kinase/metabolism , Amino Acid Sequence , Animals , Antiviral Agents/pharmacokinetics , Biotransformation , Chlorocebus aethiops , Fibroblasts , Humans , Molecular Sequence Data , Nucleotides/pharmacokinetics , Phylogeny , Sequence Alignment , Substrate Specificity , Thymidine Kinase/genetics , Vero Cells , Viral Plaque Assay , beta-Galactosidase/metabolism
14.
Antimicrob Agents Chemother ; 49(9): 3724-33, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16127046

ABSTRACT

Cidofovir (CDV) is an effective therapy for certain human cytomegalovirus (HCMV) infections in immunocompromised patients that are resistant to other antiviral drugs, but the compound is not active orally. To improve oral bioavailability, a series of lipid analogs of CDV and cyclic CDV (cCDV), including hexadecyloxypropyl-CDV and -cCDV and octadecyloxyethyl-CDV and -cCDV, were synthesized and found to have multiple-log-unit enhanced activity against HCMV in vitro. On the basis of the activity observed with these analogs, additional lipid esters were synthesized and evaluated for their activity against herpes simplex virus (HSV) types 1 and 2, human cytomegalovirus, murine cytomegalovirus, varicella-zoster virus (VZV), Epstein-Barr virus (EBV), human herpesvirus 6 (HHV-6), and HHV-8. Using several different in vitro assays, concentrations of drug as low as 0.001 microM reduced herpesvirus replication by 50% (EC50) with the CDV analogs, whereas the cCDV compounds were generally less active. In most of the assays performed, the EC50 values of the lipid esters were at least 100-fold lower than the EC50 values for unmodified CDV or cCDV. The lipid analogs were also active against isolates that were resistant to CDV, ganciclovir, or foscarnet. These results indicate that the lipid ester analogs are considerably more active than CDV itself against HSV, VZV, CMV, EBV, HHV-6, and HHV-8 in vitro, suggesting that they may have potential for the treatment of infections caused by a variety of herpesviruses.


Subject(s)
Antiviral Agents/pharmacology , Cytosine/analogs & derivatives , Herpesviridae/drug effects , Organophosphonates/pharmacology , Virus Replication/drug effects , Antiviral Agents/chemistry , Cell Adhesion/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Cidofovir , Cyclization , Cytomegalovirus/drug effects , Cytosine/chemistry , Cytosine/pharmacology , Enzyme-Linked Immunosorbent Assay , Esters/pharmacology , Fibroblasts/virology , Flow Cytometry , Humans , In Situ Hybridization , Organophosphonates/chemistry , Structure-Activity Relationship , Tetrazolium Salts , Thiazoles , Viral Plaque Assay
15.
Antiviral Res ; 65(2): 97-105, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15708636

ABSTRACT

Herpesviruses cause a wide variety of human diseases ranging from cold sores and genital herpes to encephalitis, congenital infections and lymphoproliferative diseases. These opportunistic viruses cause major problems in immunocompromised individuals such as transplant recipients, cancer patients, and HIV-infected persons. The current treatment of these infections is not optimal and there is a need for more active, less toxic compounds that might be used in place of or in addition to current therapies. We have evaluated a new series of 4-oxo-dihydroquinolines, which have a different mechanism of action than nucleosides and have activity against multiple herpesviruses. Of the four new compounds evaluated, two (PHA-529311 and PHA-570886) had greater activity than the parent, PHA-183792, against several herpesviruses and one (PHA-568561) was as effective as the parent. A fourth, PHA-243672, was considerably less effective. They had greater efficacy against cytomegalovirus (CMV) than the other herpesviruses tested and also had activity against acyclovir-resistant herpes simplex virus and varicella-zoster virus isolates and ganciclovir or foscarnet-resistant CMV isolates. These results confirm the broad-spectrum efficacy of these compounds against multiple herpesviruses and suggest that members of this class may have a potential role for treatment of a variety of herpesvirus infections.


Subject(s)
Antiviral Agents/pharmacology , Herpesviridae/drug effects , Quinolines/pharmacology , Antiviral Agents/chemistry , Cells, Cultured , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Herpesviridae/enzymology , Herpesviridae/physiology , Humans , Microbial Sensitivity Tests , Nucleic Acid Synthesis Inhibitors , Quinolines/chemistry , Viral Plaque Assay , Virus Replication/drug effects
16.
Antimicrob Agents Chemother ; 49(3): 1039-45, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15728900

ABSTRACT

We have reported previously that methylenecyclopropane analogs of nucleosides have excellent activity against certain members of the herpesvirus family. A second generation, the 2,2-bis-hydroxymethyl derivatives, were synthesized, and 18 compounds were tested for activity in vitro against herpes simplex virus types 1 and 2 (HSV-1 and HSV-2), human and murine cytomegalovirus (HCMV and MCMV), varicella-zoster virus (VZV), and Epstein-Barr virus (EBV). Selected analogs were also evaluated against human herpesvirus type 6 (HHV-6) and HHV-8. None of the 18 compounds had activity against HSV-1 or HSV-2, but four were active against VZV by plaque reduction (PR) assay at 50% effective concentration (EC(50)) levels of < or =50 microM. Six of the 18 compounds were active against HCMV by cytopathic effect or PR assays with EC(50)s of 0.5 to 44 microM, and all were active against MCMV by PR (0.3 to 54 microM). Four of the compounds were active against EBV by enzyme-linked immunosorbent assay (<0.3 to 4.4 microM). Four compounds with CMV activity were also active against HHV-6A and HHV-6B (0.7 to 28 microM), and three compounds were active against HHV-8 (5.5 to 16 microM). One of these, ZSM-I-62, had particularly good activity against CMV, HHV-6, and HHV-8, with EC(50)s of 0.7 to 8 microM. Toxicity was evaluated in adherent and nonadherent cells, and minimal cytotoxicity was observed. Mechanism of action studies with HCMV suggested that these compounds are phosphorylated by the ppUL97 phosphotransferase and are potent inhibitors of viral DNA synthesis. These results indicate that at least one of these compounds may have potential for use in treating CMV and other herpesvirus infections in humans.


Subject(s)
Antiviral Agents/pharmacology , Herpesviridae/drug effects , Nucleosides/pharmacology , Virus Replication/drug effects , Ganciclovir/pharmacology , Herpesviridae/physiology
17.
Antimicrob Agents Chemother ; 47(7): 2186-92, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12821466

ABSTRACT

Herpes simplex virus types 1 and 2 (HSV-1 and HSV-2), varicella-zoster virus (VZV), cytomegalovirus (CMV), Epstein-Barr virus (EBV), human herpesvirus 6 (HHV-6), and human herpesvirus 8 (HHV-8) are responsible for a number of clinical manifestations in both normal and immunocompromised individuals. The parent benzimidazole ribonucleosides evaluated in this series, 2-bromo-5,6-dichloro-1-(beta-D-ribofuranosyl)benzimidazole (BDCRB) and maribavir (1263W94), are potent and selective inhibitors of human CMV replication. These nucleosides act by two different mechanisms. BDCRB blocks the processing and maturation of viral DNA, whereas 1263W94 inhibits the viral enzyme pUL97 and interferes with DNA synthesis. In the present study, we have evaluated the in vitro antiviral activity of BDCRB, an analog, GW275175X (175X), and 1263W94 against the replication of HSV-1, HSV-2, VZV, CMV, EBV, HHV-6, and HHV-8. By using various methodologies, significant activity was observed against human CMV and EBV but not against HSV-1, HSV-2, VZV, HHV-6, or HHV-8. Plaque reduction assays performed on a variety of laboratory and clinical isolates of human CMV indicated that all strains, including those resistant to ganciclovir (GCV) and foscarnet, were sensitive to all three benzimidazole ribonucleosides, with mean 50% effective concentration values of about 1 to 5 microM compared to that of GCV at 6 microM. The toxicity of these compounds in tissue culture cells appeared to be similar to that observed with GCV. These results demonstrate that the benzimidazole ribonucleosides are active against human CMV and EBV and suggest that they may be useful for the treatment of infections caused by these herpesviruses.


Subject(s)
Antiviral Agents/pharmacology , Benzimidazoles/pharmacology , Herpesvirus 1, Human/drug effects , Herpesvirus 2, Human/drug effects , Ribonucleosides/pharmacology , Antiviral Agents/chemistry , Benzimidazoles/chemistry , Cytomegalovirus/drug effects , Cytomegalovirus/growth & development , Herpesvirus 1, Human/growth & development , Herpesvirus 2, Human/growth & development , Herpesvirus 3, Human/drug effects , Herpesvirus 3, Human/growth & development , Herpesvirus 6, Human/drug effects , Herpesvirus 6, Human/growth & development , Herpesvirus 8, Human/drug effects , Herpesvirus 8, Human/growth & development , In Vitro Techniques , Ribonucleosides/chemistry , Virus Replication/drug effects
18.
Nucleosides Nucleotides Nucleic Acids ; 22(12): 2105-19, 2003 Dec.
Article in English | MEDLINE | ID: mdl-14714760

ABSTRACT

We have reported previously that purine methylenecyclopropane analogs are potent agents against cytomegaloviruses. In an attempt to extend the activity of these compounds, the 2-amino-6-cyclopropylaminopurine analog, QYL-1064, was selected for further study by modifying the purine 6 substituent. A total of 22 analogs were tested against herpes simplex virus types 1 and 2 (HSV-1, HSV-2), varicella zoster virus (VZV), human cytomegalovirus (HCMV), murine cytomegalovirus (MCMV), Epstein-Barr virus (EBV), human herpesvirus type 6 (HHV-6) and human herpesvirus type 8 (HHV-8). Ten of the analogs had activity against at least one of the viruses tested. One compound had moderate activity against HSV-1 and six had activity against VZV. All but one compound was active against HCMV with a mean EC50 of 2.1 +/- 0.6 microM, compared with a mean EC50 of 3.9 +/- 0.8 microM for ganciclovir. Of special interest was the fact that eight of the ten compounds were active against both HHV-6A and HHV-6B with mean EC50 values of 6.0 +/- 5.2 mciroM and <2.4 +/- 1.5 microM, respectively. Only two compounds had activity against EBV, whereas all but one compound was active against HHV-8 with a mean EC50 of 3.1 +/- 1.7 microM. These results indicate that members of this series of methylenecyclopropane analogs are highly active against HCMV, HHV-6, and HHV-8 but are less active against HSV, VZV, and EBV.


Subject(s)
Adenosine/analogs & derivatives , Antiviral Agents/pharmacology , Guanosine/analogs & derivatives , Herpesviridae/drug effects , Antiviral Agents/chemistry , Cell Division/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Cells, Cultured , Cyclopropanes/chemistry , Cytomegalovirus/drug effects , Fibroblasts/drug effects , Fibroblasts/virology , Herpesvirus 1, Human/drug effects , Herpesvirus 2, Human/drug effects , Herpesvirus 3, Human/drug effects , Herpesvirus 4, Human/drug effects , Herpesvirus 6, Human/drug effects , Herpesvirus 8, Human/drug effects , Humans , Inhibitory Concentration 50 , Microbial Sensitivity Tests , Molecular Structure , Muromegalovirus/drug effects
19.
Antimicrob Agents Chemother ; 46(8): 2381-6, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12121908

ABSTRACT

The incidence of cytomegalovirus (CMV) retinitis is declining in AIDS patients but remains a significant clinical problem in patients with organ transplants and bone marrow transplants. Prophylaxis with ganciclovir (GCV) or valganciclovir reduces the incidence of CMV disease but may lead to the emergence of drug-resistant virus with mutations in the UL97 or UL54 gene. It would be useful to have other types of oral therapy for CMV disease. We synthesized hexadecyloxypropyl and octadecyloxyethyl derivatives of cyclic cidofovir (cCDV) and cidofovir (CDV) and found that these novel analogs had 2.5- to 4-log increases in antiviral activity against CMV compared to the activities of unmodified CDV and cCDV. Multiple-log increases in activity were noted against laboratory CMV strains and various CMV clinical isolates including GCV-resistant strains with mutations in the UL97 and UL54 genes. Preliminary cell studies suggest that the increase in antiviral activity may be partially explained by a much greater cell penetration of the novel analogs. 1-O-Hexadecyloxypropyl-CDV, 1-O-octadecyloxyethyl-CDV, and their corresponding cCDV analogs are worthy of further preclinical evaluation for treatment and prevention of CMV and herpes simplex virus infections in humans.


Subject(s)
Antiviral Agents/pharmacology , Cytomegalovirus/drug effects , Cytosine/analogs & derivatives , Cytosine/pharmacology , Herpesvirus 1, Human/drug effects , Herpesvirus 2, Human/drug effects , Organophosphonates , Organophosphorus Compounds/pharmacology , Virus Replication/drug effects , Animals , Antiviral Agents/administration & dosage , Antiviral Agents/chemical synthesis , Cells, Cultured , Cidofovir , Cytosine/administration & dosage , Cytosine/chemical synthesis , Fibroblasts , Guinea Pigs , Humans , Liposomes , Mice , Organophosphorus Compounds/administration & dosage , Organophosphorus Compounds/chemical synthesis , Rats , Structure-Activity Relationship , Viral Plaque Assay
20.
Antimicrob Agents Chemother ; 46(4): 991-5, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11897580

ABSTRACT

The nucleotide phosphonates cidofovir (CDV) and cyclic cidofovir (cCDV) are potent antiviral compounds when administered parenterally but are not well absorbed orally. These compounds have been reported to have activity against orthopoxvirus replication in vitro and in animal models when administered parenterally or by aerosol. To obtain better oral activity, we synthesized a novel series of analogs of CDV and cCDV by esterification with two long-chain alkoxyalkanols, 3-hexadecyloxy-1-propanol (HDP-CDV; HDP-cCDV) or 3-octadecyloxy-1-ethanol (ODE-CDV; ODE-cCDV). Their activities were evaluated and compared with those of CDV and cCDV in human foreskin fibroblast (HFF) cells infected with vaccinia virus (VV) or cowpox virus (CV) using a plaque reduction assay. The 50% effective concentrations (EC(50)s) against VV in HFF cells for CDV and cCDV were 46.2 and 50.6 microM compared with 0.84 and 3.8 microM for HDP-CDV and HDP-cCDV, respectively. The EC(50)s for ODE-CDV and ODE-cCDV were 0.20 and 1.1 microM, respectively. The HDP analogs were 57- and 13-fold more active than the parent nucleotides, whereas the ODE analogs were 231- and 46-fold more active than the unmodified CDV and cCDV. Similar results were obtained using CV. Cytotoxicity studies indicated that although the analogs were more toxic than the parent nucleotides, the selective index was increased by 4- to 13-fold. These results indicate that the alkoxyalkyl esters of CDV and cCDV have enhanced activity in vitro and need to be evaluated for their oral absorption and efficacy in animal models.


Subject(s)
Antiviral Agents/pharmacology , Cytosine/pharmacology , Organophosphonates , Organophosphorus Compounds/pharmacology , Orthopoxvirus/drug effects , Virus Replication/drug effects , Animals , Cell Division/drug effects , Cell Survival/drug effects , Cells, Cultured , Chlorocebus aethiops , Cidofovir , Coloring Agents , Cyclization , Cytosine/analogs & derivatives , Esters/chemical synthesis , Esters/pharmacology , Fibroblasts/virology , Humans , Indicators and Reagents , Neutral Red , Nucleotides/chemical synthesis , Nucleotides/pharmacology , Vero Cells , Viral Plaque Assay
SELECTION OF CITATIONS
SEARCH DETAIL
...