Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Prod Res ; 33(16): 2417-2421, 2019 Aug.
Article in English | MEDLINE | ID: mdl-29495880

ABSTRACT

Bothrops jararacussu venom's (Bj2015) batch was biomonitored quarterly for one year to assess phospholipase A2 (PLA2) activity, immunogenicity, neurotoxicity, and myotoxicity. In silico models were applied to evaluate losses using decay model and recoveries by predictive trend analysis. Mice were immunized with Bj2015. Antibodies were detected by double-immunodiffusion and total protein and albumin were measured. Neuromuscular blockade-induced by 40 µg mL-1 venom solution was carried out using mouse nerve phrenic-diaphragm preparation. Resulting muscles were submitted to light microscopy to evaluate the myotoxicity. PLA2 activity of 0.1 mg mL-1 Bj2015 was measured using 4-nitro-3-(octanoyloxy)benzoic acid as substrate. Over time, greater losses occurred in neurotoxicity than PLA2, but not in myotoxicity and immunogenicity. Concluding, the neurotoxicity decrease can be related to enzymatic losses, including PLA2. Depending on the purpose of use, the collected venom responds on a long time, avoiding unnecessary new collections, improving life quality of animals in captivity and increasing their longevity.


Subject(s)
Bothrops/physiology , Crotalid Venoms/toxicity , Animals , Crotalid Venoms/enzymology , Crotalid Venoms/immunology , Mice , Muscles/drug effects , Neurotoxins/pharmacology , Phospholipases A2/metabolism , Phrenic Nerve/drug effects , Prospective Studies
2.
Adv Pharm Bull ; 7(3): 433-439, 2017 Sep.
Article in English | MEDLINE | ID: mdl-29071226

ABSTRACT

Purpose: Bothrops snakes are responsible for more than 70 % of snakebites every year in Brazil and their venoms cause severe local and systemic damages. The pharmacological properties of medicinal plants have been widely investigated in order to discover new alternative treatments for different classes of diseases including neglected tropical diseases as envenomation by snakebites. In this work, we have investigated the ability of Vochysia haenkeana stem barks extract (VhE) to neutralize the neuromuscular effects caused by Bothropstoxin-I (BthTX-I), the major phospholipase A2 (PLA2) myotoxin from B. jararacussu venom. Methods: The biological compounds of VhE were analysed under thin layer chromatography (TLC) and its neutralizing ability against BthTX-I was assessed through twitch-tension recordings and histological analysis in mouse phrenic nerve-diaphragm (PND) preparations. The antimicrobial activity of VhE was assessed against S. aureus, E. coli and P. aeruginosa strains. The aggregation activity of VhE was analysed under protein precipitation assay. Results: VhE showed the presence of phenolic compound visualized by blue trace under TLC. VhE abolished the neuromuscular blockade caused by BthTX-I applying the pre-toxin incubation treatment and partially neutralized the BthTX-I action under post-toxin incubation treatment; VhE contributed slightly to decrease the myotoxicity induced by BthTX-I. The neutralizing mechanism of VhE may be related to protein aggregation. VhE showed no antimicrobial activity. Conclusion: V. haenkeana extract which has no antimicrobial activity exhibited neutralizing ability against the neuromuscular blockade caused by BthTX-I and also contributed to decrease its myotoxicity. Protein aggregation involving phenolic compounds may be related in these protective effects.

SELECTION OF CITATIONS
SEARCH DETAIL
...