Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Neurobiol Stress ; 29: 100607, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38304302

ABSTRACT

Astrocyte morphology affects function, including the regulation of glutamatergic signaling. This morphology changes dynamically in response to the environment. However, how early life manipulations alter adult cortical astrocyte morphology is underexplored. Our lab uses brief postnatal resource scarcity, the limited bedding and nesting (LBN) manipulation, in rats. We previously found that LBN augments maternal behaviors and promotes later resilience to adult addiction-related behaviors, reducing impulsivity, risky decision-making, and morphine self-administration. These behaviors rely on glutamatergic transmission in the medial orbitofrontal (mOFC) and medial prefrontal (mPFC) cortex. Here we tested whether LBN changed astrocyte morphology in the mOFC and mPFC of adult rats using a novel viral approach that, unlike traditional markers, fully labels astrocytes. Prior exposure to LBN causes an increase in the surface area and volume of astrocytes in the mOFC and mPFC of adult males and females relative to control-raised rats. We next used bulk RNA sequencing of OFC tissue to assess transcriptional changes that could increase astrocyte size in LBN rats. LBN caused mainly sex-specific changes in differentially expressed genes. Pathway analysis revealed that OFC glutamatergic signaling is altered by LBN in males and females, but the gene changes in that pathway differed across sex. This may represent a convergent sex difference where glutamatergic signaling, which affects astrocyte morphology, is altered by LBN via sex-specific mechanisms. Collectively, these studies highlight that astrocytes may be an important cell type that mediates the effect of early resource scarcity on adult brain function.

2.
bioRxiv ; 2023 Jul 02.
Article in English | MEDLINE | ID: mdl-37425737

ABSTRACT

Astrocyte morphology affects function, including the regulation of glutamatergic signaling. This morphology changes dynamically in response to the environment. However, how early life manipulations alter adult cortical astrocyte morphology is underexplored. Our lab uses brief postnatal resource scarcity, the limited bedding and nesting (LBN) manipulation, in rats. We previously found that LBN promotes later resilience to adult addiction-related behaviors, reducing impulsivity, risky decision-making, and morphine self-administration. These behaviors rely on glutamatergic transmission in the medial orbitofrontal (mOFC) and medial prefrontal (mPFC) cortex. Here we tested whether LBN changed astrocyte morphology in the mOFC and mPFC of adult rats using a novel viral approach that, unlike traditional markers, fully labels astrocytes. Prior exposure to LBN causes an increase in the surface area and volume of astrocytes in the mOFC and mPFC of adult males and females relative to control-raised rats. We next used bulk RNA sequencing of OFC tissue to assess transcriptional changes that could increase astrocyte size in LBN rats. LBN caused mainly sex-specific changes in differentially expressed genes. However, Park7, which encodes for the protein DJ-1 that alters astrocyte morphology, was increased by LBN across sex. Pathway analysis revealed that OFC glutamatergic signaling is altered by LBN in males and females, but the gene changes in that pathway differed across sex. This may represent a convergent sex difference where glutamatergic signaling, which affects astrocyte morphology, is altered by LBN via sex-specific mechanisms. Collectively, these studies highlight that astrocytes may be an important cell type that mediates the effect of early resource scarcity on adult brain function.

3.
eNeuro ; 9(5)2022.
Article in English | MEDLINE | ID: mdl-35995558

ABSTRACT

Accumulating evidence indicates significant consequences for astrocytes associated with drug abuse. For example, reductions in structural features and synaptic colocalization of male rat nucleus accumbens (NAc) astrocytes are observed following short-access (ShA; 2 h/d) self-administration and extinction from cocaine, methamphetamine, and heroin. However, it is unknown whether these observations extend to other rodent models of drug abuse, how enduring these effects may be, and whether similar effects are observed in female rats. Here, we assess the effects of long-access (LgA; 6 h/d) cocaine self-administration and abstinence on NAc astrocytes separately in male and female rats, employing a commonly used behavioral approach to investigate the incubation of cocaine craving. NAc astrocytes from male rats exhibit extensive (∼40%) reductions in surface area, volume, and postsynaptic colocalization 45 d but not 24 h after the last self-administration session. In contrast, no effect of self-administration and abstinence was observed in astrocytes from female rats. Moreover, no effect of LgA self-administration and abstinence was observed on NAc GLT-1 expression in female rats, an effect that has been well described in males. These results indicate striking and sexually dimorphic effects of abstinence subsequent to LgA self-administration on astrocytes. Taken together, these results indicate a pivotal role of prolonged abstinence in the effects of cocaine self-administration on NAc astrocytes, and extend a growing body of evidence regarding sex differences in the cellular consequences of drug self-administration in the brain.


Subject(s)
Cocaine , Methamphetamine , Animals , Astrocytes , Cocaine/pharmacology , Female , Heroin/pharmacology , Male , Methamphetamine/pharmacology , Nucleus Accumbens/metabolism , Rats , Self Administration
4.
Neuropsychopharmacology ; 46(5): 959-969, 2021 04.
Article in English | MEDLINE | ID: mdl-32927465

ABSTRACT

Δ9-tetrahydrocannabinol (THC) is the intoxicating constituent of cannabis and is responsible for the drug's reinforcing effects. Retrospective human studies suggest that cannabis use during adolescence is linked to long-term negative psychological outcomes, but in such studies it is difficult to distinguish the effects of THC from those of coexisting factors. Therefore, translationally relevant animal models are required to properly investigate THC effects in adolescents. However, though the relevance of these studies depends upon human-relevant dosing, surprisingly little is known about THC pharmacology and its effects on behavior and brain activity in adolescent rodents-especially in females. Here, we conducted a systematic investigation of THC pharmacokinetics, metabolism and distribution in blood and brain, and of THC effects upon behavior and neural activity in adolescent Long Evans rats of both sexes. We administered THC during an early-middle adolescent window (postnatal days 27-45) in which the brain may be particularly sensitive to developmental perturbation by THC. We determined the pharmacokinetic profile of THC and its main first-pass metabolites (11-hydroxy-THC and 11-nor-9-carboxy-THC) in blood and brain following acute injection (0.5 or 5 mg/kg, intraperitoneal). We also evaluated THC effects on behavioral assays of anxiety, locomotion, and place conditioning, as well as c-Fos expression in 14 brain regions. Confirming previous work, we find marked sex differences in THC metabolism, including a female-specific elevation in the bioactive metabolite 11-hydroxy-THC. Furthermore, we find dose-dependent and sex-dependent effects on behavior, neural activity, and functional connectivity across multiple nodes of brain stress and reward networks. Our findings are relevant for interpreting results of rat adolescent THC exposure studies, and may lend new insights into how THC impacts the brain in a sex-dependent manner.


Subject(s)
Dronabinol , Hallucinogens , Animals , Brain , Dronabinol/pharmacology , Female , Male , Rats , Rats, Long-Evans , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...