Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 28(19): 3231-3235, 2018 10 15.
Article in English | MEDLINE | ID: mdl-30170942

ABSTRACT

Due to increased interest in As(III) S-adenosylmethionine methyltransferase (AS3MT), a search for chemical probes that can help elucidate function was initiated. A homology model was built based on related enzymes, and virtual screening produced 426 potential hits. Evaluation of these compounds in a functional enzymatic assay revealed several modest inhibitors including an O-substituted 2-amino-3-cyano indole scaffold. Two iterations of near neighbor searches revealed compound 5 as a potent inhibitor of AS3MT with good selectivity over representative methyltransferases DOT1L and NSD2 as well as a representative set of diverse receptors. Compound 5 should prove to be a useful tool to investigate the role of AS3MT and a potential starting point for further optimization.


Subject(s)
Enzyme Inhibitors/pharmacology , Methyltransferases/antagonists & inhibitors , Humans
2.
SLAS Discov ; 23(1): 11-22, 2018 01.
Article in English | MEDLINE | ID: mdl-28945981

ABSTRACT

A high-throughput screen (HTS) of human 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) resulted in several series of compounds with the potential for further optimization. Informatics was used to identify active chemotypes with lead-like profiles and remove compounds that commonly occurred as actives in other HTS screens. The activities were confirmed with IC50 measurements from two orthogonal assay technologies, and further analysis of the Hill slopes and comparison of the ratio of IC50 values at 10 times the enzyme concentration were used to identify artifact compounds. Several series of compounds were rejected as they had both high slopes and poor ratios. A small number of compounds representing the different leading series were assessed using isothermal titration calorimetry, and the X-ray crystal structure of the complex with PFKFB3 was solved. The orthogonal assay technology and isothermal calorimetry were demonstrated to be unreliable in identifying false-positive compounds in this case. Presented here is the discovery of the dihydropyrrolopyrimidinone series of compounds as active and novel inhibitors of PFKFB3, shown by X-ray crystallography to bind to the adenosine triphosphate site. The crystal structures of this series also reveal it is possible to flip the binding mode of the compounds, and the alternative orientation can be driven by a sigma-hole interaction between an aromatic chlorine atom and a backbone carbonyl oxygen. These novel inhibitors will enable studies to explore the role of PFKFB3 in driving the glycolytic phenotype of tumors.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Screening Assays, Antitumor/methods , Enzyme Inhibitors/pharmacology , High-Throughput Screening Assays , Phosphofructokinase-2/antagonists & inhibitors , Antineoplastic Agents/chemistry , Calorimetry/methods , Enzyme Inhibitors/chemistry , Gene Expression Regulation, Neoplastic/drug effects , Humans , Inhibitory Concentration 50 , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Phosphofructokinase-2/chemistry , Phosphofructokinase-2/genetics , Phosphofructokinase-2/metabolism , Quantitative Structure-Activity Relationship , Small Molecule Libraries , Workflow
3.
Anal Biochem ; 503: 58-64, 2016 06 15.
Article in English | MEDLINE | ID: mdl-27036617

ABSTRACT

Poly(ADP-ribose) (PAR) polymers are transient post-translational modifications, and their formation is catalyzed by poly(ADP-ribose) polymerase (PARP) enzymes. A number of PARP inhibitors are in advanced clinical development for BRCA-mutated breast cancer, and olaparib has recently been approved for BRCA-mutant ovarian cancer; however, there has already been evidence of developed resistance mechanisms. Poly(ADP-ribose) glycohydrolase (PARG) catalyzes the hydrolysis of the endo- and exo-glycosidic bonds within the PAR polymers. As an alternative strategy, PARG is a potentially attractive therapeutic target. There is only one PARG gene, compared with 17 known PARP family members, and therefore a PARG inhibitor may have wider application with fewer compensatory mechanisms. Prior to the initiation of this project, there were no known existing cell-permeable small molecule PARG inhibitors for use as tool compounds to assess these hypotheses and no suitable high-throughput screening (HTS)-compatible biochemical assays available to identify start points for a drug discovery project. The development of this newly described high-throughput homogeneous time-resolved fluorescence (HTRF) assay has allowed HTS to proceed and, from this, the identification and advancement of multiple validated series of tool compounds for PARG inhibition.


Subject(s)
Fluorescence , Glycoside Hydrolases/metabolism , High-Throughput Screening Assays/methods , Luminescent Measurements/methods , Cell Line , Enzyme Inhibitors/pharmacology , Glycoside Hydrolases/analysis , Glycoside Hydrolases/antagonists & inhibitors , Humans , Structure-Activity Relationship , Time Factors
4.
Virol J ; 11: 191, 2014 Nov 19.
Article in English | MEDLINE | ID: mdl-25407889

ABSTRACT

BACKGROUND: There are no approved small molecule drug therapies for human respiratory syncytial virus (hRSV), a cause of morbidity and mortality in at-risk newborns, the immunocompromised, and the elderly. We have investigated as a potential novel hRSV drug target the protein-protein interaction between the C-terminus of the viral phosphoprotein (P) and the viral nucleocapsid protein (N), components of the ribonucleoprotein complex that contains, replicates, and transcribes the viral RNA genome. Earlier work by others established that the 9 C-terminal residues of P are necessary and sufficient for binding to N. METHODS: We used a fluorescence anisotropy assay, surface plasmon resonance and 2-D NMR to quantify the affinities of peptides based on the C terminus of P for RNA-free, monomeric N-terminal-truncated N(13-391). We calculated the contributions to the free energies of binding of P to N(13-391) attributable to the C-terminal 11 residues, phosphorylation of the C-terminal 2 serine residues, the C-terminal Asp-Phe, and the phenyl ring of the C-terminal Phe. RESULTS: Binding studies confirmed the crucial role of the phosphorylated C-terminal peptide D(pS)DNDL(pS)LEDF for binding of P to RNA-free, monomeric N(13-391), contributing over 90% of the binding free energy at low ionic strength. The phenyl ring of the C-terminal Phe residue contributed an estimated -2.7 kcal/mole of the free energy of binding, the C-terminal Asp-Phe residues contributed -3.8 kcal/mole, the sequence DSDNDLSLE contributed -3.1 kcal/mole, and phosphorylation of the 2 Ser residues contributed -1.8 kcal/mole. Due to the high negative charge of the C-terminal peptide, the affinity of the P C-terminus for N(13-391) decreased as the ionic strength increased. CONCLUSIONS: The results support the idea that the interaction of the C-terminal residues of P with N constitutes a protein-protein interaction hotspot that may be a suitable target for small-molecule drugs that inhibit viral genome replication and transcription.


Subject(s)
Nucleoproteins/chemistry , Nucleoproteins/metabolism , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus, Human/metabolism , Viral Structural Proteins/chemistry , Viral Structural Proteins/metabolism , Amino Acid Motifs , Binding Sites , Humans , Kinetics , Nucleoproteins/genetics , Phosphorylation , Protein Binding , Respiratory Syncytial Virus, Human/chemistry , Respiratory Syncytial Virus, Human/genetics , Viral Structural Proteins/genetics
5.
J Biomol Screen ; 18(5): 567-75, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23427045

ABSTRACT

Flap endonuclease-1 (FEN1) is a highly conserved metallonuclease and is the main human flap endonuclease involved in the recognition and cleavage of single-stranded 5' overhangs from DNA flap structures. The involvement of FEN1 in multiple DNA metabolism pathways and the identification of FEN1 overexpression in a variety of cancers has led to interest in FEN1 as an oncology target. In this article, we describe the development of a 1536-well high-throughput screening assay based on the change in fluorescence polarization of a FEN1 DNA substrate labeled with Atto495 dye. The assay was subsequently used to screen 850 000 compounds from the AstraZeneca compound collection, with a Z' factor of 0.66 ± 0.06. Hits were followed up by IC50 determination in both a concentration-response assay and a technology artifact assay.


Subject(s)
DNA Cleavage , Drug Discovery/methods , Enzyme Inhibitors/isolation & purification , Flap Endonucleases/antagonists & inhibitors , High-Throughput Screening Assays/methods , DNA Cleavage/drug effects , Dose-Response Relationship, Drug , Flap Endonucleases/metabolism , Fluorescence Polarization/methods , Humans , Models, Biological , Oligonucleotides/chemistry , Oligonucleotides/metabolism , Osmolar Concentration , Small Molecule Libraries/analysis , Substrate Specificity
6.
Cell Biochem Biophys ; 60(1-2): 99-111, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21468692

ABSTRACT

USP7 (HAUSP) is a deubiquitinating enzyme, which plays a crucial role in regulating the levels of the p53 tumour suppressor protein, through its ability to prevent the proteasomal degradation of the Ubiquitin ligase for p53, Hdm2. Supporting evidence suggests that an inhibitor of USP7 would act to abrogate the action of Hdm2, and thereby elevate levels of the p53 protein, with associated therapeutic benefits in cancer and potentially other diseases. In this article, we describe the characterisation of differential enzyme activity of both the full length and putative catalytic domain of human USP7 expressed in both bacterial and insect cell expression systems. We also demonstrate the way in which variations in the reducing environment surrounding the enzyme can dramatically affect both the stability of the enzyme and the range of small molecules able to inhibit the catalytic activity of the enzyme. Furthermore, we describe the validation and use of this assay for a high-throughput screening approach, again highlighting the critical nature of the enzyme's environment. Taken together, these findings not only increase our understanding of the enzymatic activity of deubiquitinating enzymes, but also highlight several key considerations of importance in the development of therapeutic agents against this novel class of therapeutic targets.


Subject(s)
Enzyme Inhibitors/pharmacology , Ubiquitin Thiolesterase/antagonists & inhibitors , Ubiquitin Thiolesterase/metabolism , Ubiquitin/metabolism , Amino Acid Sequence , Animals , Biocatalysis/drug effects , Catalytic Domain/genetics , Cell Line , Coumarins/metabolism , Dithiothreitol/pharmacology , Dose-Response Relationship, Drug , Electrophoresis, Polyacrylamide Gel , Enzyme Stability , Glutathione/pharmacology , Humans , Kinetics , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Maleimides/pharmacology , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/metabolism , Spectrometry, Fluorescence , Spodoptera , Substrate Specificity , Temperature , Ubiquitin/genetics , Ubiquitin Thiolesterase/genetics , Ubiquitin-Specific Peptidase 7 , Ubiquitins/metabolism
7.
Electrophoresis ; 26(19): 3674-81, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16136523

ABSTRACT

On-chip electrophoresis can provide size separations of nucleic acids and proteins similar to more traditional slab gel electrophoresis. Lab-on-a-chip (LoaC) systems utilize on-chip electrophoresis in conjunction with sizing calibration, sensitive detection schemes, and sophisticated data analysis to achieve rapid analysis times (<120 s). This work describes the utility of LoaC systems to enable and augment systems biology investigations. RNA quality, as assessed by an RNA integrity number score, is compared to existing quality control (QC) measurements. High-throughput DNA analysis of multiplex PCR samples is used to stratify gene sets for disease discovery. Finally, the applicability of a high-throughput LoaC system for assessing protein purification is demonstrated. The improvements in workflow processes, speed of analysis, data accuracy and reproducibility, and automated data analysis are illustrated.


Subject(s)
DNA/analysis , Electrophoresis, Microchip/methods , Proteins/analysis , RNA/analysis , Humans
8.
Protein Expr Purif ; 42(1): 29-36, 2005 Jul.
Article in English | MEDLINE | ID: mdl-15939290

ABSTRACT

Recombinant baculoviruses have proved to be a very useful means to express many proteins over the last 20 years. Since their introduction, there have been a number of significant improvements that have simplified and speeded up the construction of baculoviruses. One of the most commonly used methods relies upon recombination with the baculovirus genome maintained in Escherichia coli. In this paper, we report the conversion of nearly all the steps in this process including the expression testing and purification to a multi-well plate format. This enables a significant increase in the number of constructs that can be processed in a shorter period of time and an order of magnitude increase in the number of expression conditions that can be analysed. A key step in our process is that the transfection is done in suspension rather than adherent cells, which gives a much higher virus titre than in the standard methods.


Subject(s)
Baculoviridae/genetics , Gene Expression/genetics , Recombinant Proteins/biosynthesis , Animals , Cell Culture Techniques/methods , Cell Line , Cell Proliferation , Escherichia coli/genetics , Genetic Vectors/genetics , Histidine/genetics , Recombinant Proteins/isolation & purification , Reproducibility of Results , Spodoptera , Transfection/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...