Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Insects ; 14(9)2023 Sep 16.
Article in English | MEDLINE | ID: mdl-37754738

ABSTRACT

Insect culture has developed rapidly worldwide; it faces important security and safety control issues, including animal infections and disease development. In the Netherlands, in 2021, a ~30% mortality of mealworms, Tenebrio molitor, occurred at one farm, where over-humid sites in the substrate were observed. Bacterial cultures from both the external and internal partsof fry and larger mealworms were identified by MALDI-TOF to predominantly Serratia marcescens, Staphylococcus xylosus and Staphylococus saprofyticus. Due to the important role of S. marcescens as a potential zoonotic bacterium, we performed a molecular characterization of the isolated strain. Genomic analysis showed a multidrug-resistant S. marcescens isolate carrying a tet (41), aac (6')-Ic, and blaSST-1 chromosomal class C beta-lactamase-resistantgenes, all located on the chromosome. Additionally, several virulence genes were identified. The phylogenetic tree revealed that the S. marcescens strain from this study was similar to other S. marcescens strains from different ecological niches. Although the entomopathogenic activity was not confirmed, this case demonstrates that T. molitor can act as a reservoir and as an alternative path for exposing clinically important antibiotic-resistant bacteria that can affect animals and humans. It underlines the need to keep management factors optimal, before insects and their products enter the feed and food chain.

2.
Viruses ; 15(5)2023 04 25.
Article in English | MEDLINE | ID: mdl-37243138

ABSTRACT

Several reports demonstrated the susceptibility of domestic cats to SARS-CoV-2 infection. Here, we describe a thorough investigation of the immune responses in cats after experimental SARS-CoV-2 inoculation, along with the characterization of infection kinetics and pathological lesions. Specific pathogen-free domestic cats (n = 12) were intranasally inoculated with SARS-CoV-2 and subsequently sacrificed on DPI (days post-inoculation) 2, 4, 7 and 14. None of the infected cats developed clinical signs. Only mild histopathologic lung changes associated with virus antigen expression were observed mainly on DPI 4 and 7. Viral RNA was present until DPI 7, predominantly in nasal and throat swabs. The infectious virus could be isolated from the nose, trachea and lungs until DPI 7. In the swab samples, no biologically relevant SARS-CoV-2 mutations were observed over time. From DPI 7 onwards, all cats developed a humoral immune response. The cellular immune responses were limited to DPI 7. Cats showed an increase in CD8+ cells, and the subsequent RNA sequence analysis of CD4+ and CD8+ subsets revealed a prominent upregulation of antiviral and inflammatory genes on DPI 2. In conclusion, infected domestic cats developed a strong antiviral response and cleared the virus within the first week after infection without overt clinical signs and relevant virus mutations.


Subject(s)
COVID-19 , Animals , Cats , COVID-19/pathology , SARS-CoV-2 , Lung , Immunity, Humoral
3.
J Antimicrob Chemother ; 78(7): 1701-1704, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37248737

ABSTRACT

BACKGROUND: As WGS comes of age, changes in EU legislation implemented in 2021 allow its usage for systematic monitoring of ESBL-producing Escherichia coli from livestock and meat, replacing phenotypic testing. Presently, phenotypic testing correlates well with antimicrobial resistance predicted from WGS data. WGS has added value in the wealth of additional information that is present in the data. OBJECTIVES: In this study we have detected the resistance phenotypes for a panel of antimicrobials while also analysing the molecular epidemiology of ESBL-producing E. coli. METHODS: Susceptibility testing was performed with broth microdilution of selectively isolated E. coli. Short-read WGS was performed in parallel and phenotypes predicted based on the sequence data, which was also used to determine the phylogeny of the isolates. RESULTS: The phenotypically determined resistance and the predicted resistance correlated 90%-100% for the different antimicrobial classes. Furthermore, clonal relationships were detected amongst ESBL-producing E. coli within livestock sectors and the meat produced by this sector. CONCLUSIONS: Further implementation of WGS analysis of ESBL/AmpC-producing E. coli within the AMR monitoring programme of EU member states and global surveillance programmes will contribute to determining the attribution of livestock in the prevalence of ESBL/AmpC-encoding E. coli in humans.


Subject(s)
Escherichia coli Infections , Escherichia coli , Animals , Humans , Escherichia coli Infections/epidemiology , Escherichia coli Infections/veterinary , Livestock , beta-Lactamases/genetics , Anti-Bacterial Agents/pharmacology , Meat
4.
J Gen Virol ; 104(5)2023 05.
Article in English | MEDLINE | ID: mdl-37185260

ABSTRACT

Recombinant Newcastle disease virus (rNDV) strains engineered to express foreign genes from an additional transcription unit (ATU) are considered as candidate live-attenuated vector vaccines for human and veterinary use. Early during the COVID-19 pandemic we and others generated COVID-19 vaccine candidates based on rNDV expressing a partial or complete SARS-CoV-2 spike (S) protein. In our studies, a number of the rNDV constructs did not show high S expression levels in cell culture or seroconversion in immunized hamsters. Sanger sequencing showed the presence of frequent A-to-G transitions characteristic of adenosine deaminase acting on RNA (ADAR). Subsequent whole genome rNDV sequencing revealed that this biased hypermutation was exclusively localized in the ATU expressing the spike gene, and was related to deamination of adenosines in the negative strand viral genome RNA. The biased hypermutation was found both after virus rescue in chicken cell line DF-1 followed by passaging in embryonated chicken eggs, and after direct virus rescue and subsequent passaging in Vero E6 cells. Levels of biased hypermutation were higher in constructs containing codon-optimized as compared to native S gene sequences, suggesting potential association with increased GC content. These data show that deep sequencing of candidate recombinant vector vaccine constructs in different phases of development is of crucial importance in the development of NDV-based vaccines.


Subject(s)
COVID-19 , Newcastle Disease , Viral Vaccines , Animals , Humans , Newcastle disease virus/genetics , COVID-19 Vaccines , Pandemics , SARS-CoV-2/genetics , Chickens , Vaccines, Synthetic , RNA
5.
Pathogens ; 12(2)2023 01 20.
Article in English | MEDLINE | ID: mdl-36839440

ABSTRACT

Wild carnivore species infected with highly pathogenic avian influenza (HPAI) virus subtype H5N1 during the 2021-2022 outbreak in the Netherlands included red fox (Vulpes vulpes), polecat (Mustela putorius), otter (Lutra lutra), and badger (Meles meles). Most of the animals were submitted for testing because they showed neurological signs. In this study, the HPAI H5N1 virus was detected by PCR and/or immunohistochemistry in 11 animals and was primarily present in brain tissue, often associated with a (meningo) encephalitis in the cerebrum. In contrast, the virus was rarely detected in the respiratory tract and intestinal tract and associated lesions were minimal. Full genome sequencing followed by phylogenetic analysis demonstrated that these carnivore viruses were related to viruses detected in wild birds in the Netherlands. The carnivore viruses themselves were not closely related, and the infected carnivores did not cluster geographically, suggesting that they were infected separately. The mutation PB2-E627K was identified in most carnivore virus genomes, providing evidence for mammalian adaptation. This study showed that brain samples should be included in wild life surveillance programs for the reliable detection of the HPAI H5N1 virus in mammals. Surveillance of the wild carnivore population and notification to the Veterinary Authority are important from a one-heath perspective, and instrumental to pandemic preparedness.

6.
mBio ; 13(4): e0060922, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35726917

ABSTRACT

Phylogenetic evidence from the recent resurgence of high-pathogenicity avian influenza (HPAI) virus subtype H5N1, clade 2.3.4.4b, observed in European wild birds and poultry since October 2021, suggests at least two different and distinct reservoirs. We propose contrasting hypotheses for this emergence: (i) resident viruses have been maintained, presumably in wild birds, in northern Europe throughout the summer of 2021 to cause some of the outbreaks that are part of the most recent autumn/winter 2021 epizootic, or (ii) further virus variants were reintroduced by migratory birds, and these two sources of reintroduction have driven the HPAI resurgence. Viruses from these two principal sources can be distinguished by their hemagglutinin genes, which segregate into two distinct sublineages (termed B1 and B2) within clade 2.3.4.4b, as well as their different internal gene compositions. The evidence of enzootic HPAI virus circulation during the summer of 2021 indicates a possible paradigm shift in the epidemiology of HPAI in Europe.


Subject(s)
Influenza A Virus, H5N1 Subtype , Influenza A virus , Influenza in Birds , Animals , Animals, Wild , Birds , Europe/epidemiology , Influenza A Virus, H5N1 Subtype/genetics , Influenza A virus/genetics , Influenza in Birds/epidemiology , Phylogeny , Poultry
7.
Microbiol Spectr ; 10(2): e0249921, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35286149

ABSTRACT

Highly pathogenic avian influenza (HPAI) viruses of subtype H5Nx caused outbreaks in poultry, captive birds, and wild birds in the Netherlands between October 2020 and June 2021. The full genome sequences of 143 viruses were analyzed. HPAI viruses were mainly of subtype H5N8, followed by H5N1, but also viruses of subtypes H5N3, H5N4, and H5N5 were detected. At least seven distinct genotypes were found, carrying closely related H5 segments belonging to clade 2.3.4.4b. Molecular clock analysis suggests that the reassortments of the NA gene segments likely occurred before the introduction of these viruses into the Netherlands. Genetic analysis suggested that multiple independent introductions of HPAI H5N8 viruses occurred in the Netherlands, likely followed by local spread resulting in at least two clusters of related viruses. The analysis provided evidence for independent introductions from wild birds at 10 poultry farms, whereas for two outbreaks transmission between farms could not be excluded. HPAI H5Nx viruses were detected in dead wild birds of 33 species, but mostly infected geese and swans were found. The pathogenicity of the H5N8 virus was determined for chickens and Pekin ducks, showing reduced mortality for ducks. This study provides more insight into the genetic diversity of HPAI H5Nx viruses generated by reassortment and evolution, and the spread of these viruses between wild birds and poultry. The fast and continuing evolution of H5 clade 2.3.4.4b may provide opportunities for these viruses to adapt to specific bird species, or possibly mammalian species and humans. IMPORTANCE Highly pathogenic avian influenza (HPAI) viruses are spread by migratory wild birds. Viruses causing outbreaks in wild birds and poultry in the Netherlands in 2020-2021 were genetically analyzed, which suggested that multiple virus incursions occurred. The outbreaks in poultry were likely caused by independent introductions from wild birds; only in one case virus spread between farms could not be excluded. Viruses of subtype H5N8 were mainly observed, but also other subtypes were detected that likely evolved by exchange of genetic information before these viruses were introduced into the Netherlands. Viruses were detected in many species of dead wild birds, but mostly in geese and swans. We showed that the H5N8 virus causes a higher mortality in chickens compared to ducks. This is consistent with the fact that not many wild ducks were found dead. This study provides more insight in the evolution and spread of HPAI viruses in wild birds and poultry.


Subject(s)
Influenza A Virus, H5N1 Subtype , Influenza A Virus, H5N8 Subtype , Influenza A virus , Influenza in Birds , Poultry Diseases , Animals , Animals, Wild , Chickens , Disease Outbreaks , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N8 Subtype/genetics , Influenza A virus/genetics , Influenza in Birds/epidemiology , Mammals , Netherlands/epidemiology , Phylogeny , Poultry
8.
Transbound Emerg Dis ; 69(5): 3001-3007, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34080762

ABSTRACT

Animals like mink, cats and dogs are susceptible to SARS-CoV-2 infection. In the Netherlands, 69 out of 127 mink farms were infected with SARS-CoV-2 between April and November 2020 and all mink on infected farms were culled after SARS-CoV-2 infection to prevent further spread of the virus. On some farms, (feral) cats and dogs were present. This study provides insight into the prevalence of SARS-CoV-2-positive cats and dogs in 10 infected mink farms and their possible role in transmission of the virus. Throat and rectal swabs of 101 cats (12 domestic and 89 feral cats) and 13 dogs of 10 farms were tested for SARS-CoV-2 using PCR. Serological assays were performed on serum samples from 62 adult cats and all 13 dogs. Whole Genome Sequencing was performed on one cat sample. Cat-to-mink transmission parameters were estimated using data from all 10 farms. This study shows evidence of SARS-CoV-2 infection in 12 feral cats and 2 dogs. Eleven cats (18%) and two dogs (15%) tested serologically positive. Three feral cats (3%) and one dog (8%) tested PCR-positive. The sequence generated from the cat throat swab clustered with mink sequences from the same farm. The calculated rate of mink-to-cat transmission showed that cats on average had a chance of 12% (95%CI 10%-18%) of becoming infected by mink, assuming no cat-to-cat transmission. As only feral cats were infected it is most likely that infections in cats were initiated by mink, not by humans. Whether both dogs were infected by mink or humans remains inconclusive. This study presents one of the first reports of interspecies transmission of SARS-CoV-2 that does not involve humans, namely mink-to-cat transmission, which should also be considered as a potential risk for spread of SARS-CoV-2.


Subject(s)
COVID-19 , Cat Diseases , Dog Diseases , Animals , Animals, Wild , COVID-19/epidemiology , COVID-19/veterinary , Cat Diseases/epidemiology , Cats , Dog Diseases/epidemiology , Dogs , Farms , Humans , Mink , SARS-CoV-2
9.
Emerg Infect Dis ; 27(11): 2960-2962, 2021 11.
Article in English | MEDLINE | ID: mdl-34670656

ABSTRACT

We detected infection with highly pathogenic avian influenza A(H5N1) virus clade 2.3.4.4b in 2 red fox (Vulpes vulpes) cubs found in the wild with neurologic signs in the Netherlands. The virus is related to avian influenza viruses found in wild birds in the same area.


Subject(s)
Influenza A Virus, H5N1 Subtype , Influenza A virus , Influenza in Birds , Animals , Animals, Wild , Foxes , Influenza in Birds/epidemiology , Netherlands/epidemiology , Phylogeny
10.
Sci Rep ; 11(1): 16516, 2021 08 13.
Article in English | MEDLINE | ID: mdl-34389764

ABSTRACT

Chlamydia gallinacea is an obligate intracellular bacterium that has recently been added to the family of Chlamydiaceae. C. gallinacea is genetically diverse, widespread in poultry and a suspected cause of pneumonia in slaughterhouse workers. In poultry, C. gallinacea infections appear asymptomatic, but studies about the pathogenic potential are limited. In this study two novel sequence types of C. gallinacea were isolated from apparently healthy chickens. Both isolates (NL_G47 and NL_F725) were closely related to each other and have at least 99.5% DNA sequence identity to C. gallinacea Type strain 08-1274/3. To gain further insight into the pathogenic potential, infection experiments in embryonated chicken eggs and comparative genomics with Chlamydia psittaci were performed. C. psittaci is a ubiquitous zoonotic pathogen of birds and mammals, and infection in poultry can result in severe systemic illness. In experiments with embryonated chicken eggs, C. gallinacea induced mortality was observed, potentially strain dependent, but lower compared to C. psittaci induced mortality. Comparative analyses confirmed all currently available C. gallinacea genomes possess the hallmark genes coding for known and potential virulence factors as found in C. psittaci albeit to a reduced number of orthologues or paralogs. The presence of potential virulence factors and the observed mortality in embryonated eggs indicates C. gallinacea should rather be considered as an opportunistic pathogen than an innocuous commensal.


Subject(s)
Chlamydia Infections/veterinary , Chlamydia/pathogenicity , Chlamydophila psittaci/pathogenicity , Poultry Diseases/microbiology , Psittacosis/veterinary , Animals , Chick Embryo , Chickens/microbiology , Chlamydia/genetics , Chlamydia Infections/microbiology , Chlamydophila psittaci/genetics , Genetic Association Studies , Phylogeny , Psittacosis/microbiology , Virulence/genetics
11.
Occup Environ Med ; 78(12): 893-899, 2021 12.
Article in English | MEDLINE | ID: mdl-34330815

ABSTRACT

OBJECTIVE: Unprecedented SARS-CoV-2 infections in farmed minks raised immediate concerns regarding transmission to humans and initiated intensive environmental investigations to assess occupational and environmental exposure. METHODS: Air sampling was performed at infected Dutch mink farms, at farm premises and at nearby residential sites. A range of other environmental samples were collected from minks' housing units, including bedding materials. SARS-CoV-2 RNA was analysed in all samples by quantitative PCR. RESULTS: Inside the farms, considerable levels of SARS-CoV-2 RNA were found in airborne dust, especially in personal inhalable dust samples (approximately 1000-10 000 copies/m3). Most of the settling dust samples tested positive for SARS-CoV-2 RNA (82%, 75 of 92). SARS-CoV-2 RNA was not detected in outdoor air samples, except for those collected near the entrance of the most recently infected farm. Many samples of minks' housing units and surfaces contained SARS-CoV-2 RNA. CONCLUSIONS: Infected mink farms can be highly contaminated with SARS-CoV-2 RNA. This warns of occupational exposure, which was substantiated by considerable SARS-CoV-2 RNA concentrations in personal air samples. Dispersion of SARS-CoV-2 to outdoor air was found to be limited and SARS-CoV-2 RNA was not detected in air samples collected beyond farm premises, implying a negligible risk of environmental exposure to nearby communities. Our occupational and environmental risk assessment is in line with whole genome sequencing analyses showing mink-to-human transmission among farm workers, but no indications of direct zoonotic transmission events to nearby communities.


Subject(s)
Dust/analysis , Environmental Exposure , Farms , Mink/virology , Occupational Exposure , RNA, Viral/isolation & purification , SARS-CoV-2/isolation & purification , Animals , Humans , Netherlands/epidemiology
12.
Emerg Infect Dis ; 27(6): 1750-1753, 2021.
Article in English | MEDLINE | ID: mdl-34013854

ABSTRACT

Highly pathogenic avian influenza A(H5N8) virus was detected in mute swans in the Netherlands during October 2020. The virus shares a common ancestor with clade 2.3.4.4b viruses detected in Egypt during 2018-2019 and has similar genetic composition. The virus is not directly related to H5N8 viruses from Europe detected in the first half of 2020.


Subject(s)
Influenza A Virus, H5N8 Subtype , Influenza in Birds , Animals , Animals, Wild , Egypt , Europe , Netherlands , Phylogeny
13.
Science ; 371(6525): 172-177, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33172935

ABSTRACT

Animal experiments have shown that nonhuman primates, cats, ferrets, hamsters, rabbits, and bats can be infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In addition, SARS-CoV-2 RNA has been detected in felids, mink, and dogs in the field. Here, we describe an in-depth investigation using whole-genome sequencing of outbreaks on 16 mink farms and the humans living or working on these farms. We conclude that the virus was initially introduced by humans and has since evolved, most likely reflecting widespread circulation among mink in the beginning of the infection period, several weeks before detection. Despite enhanced biosecurity, early warning surveillance, and immediate culling of animals in affected farms, transmission occurred between mink farms in three large transmission clusters with unknown modes of transmission. Of the tested mink farm residents, employees, and/or individuals with whom they had been in contact, 68% had evidence of SARS-CoV-2 infection. Individuals for which whole genomes were available were shown to have been infected with strains with an animal sequence signature, providing evidence of animal-to-human transmission of SARS-CoV-2 within mink farms.


Subject(s)
COVID-19/transmission , COVID-19/virology , Mink , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Zoonoses , Animals , COVID-19/epidemiology , COVID-19/veterinary , Disease Outbreaks , Farms , Humans , Likelihood Functions , Mutation , Netherlands/epidemiology , Phylogeny , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2/classification , SARS-CoV-2/physiology , Whole Genome Sequencing , Zoonoses/transmission , Zoonoses/virology
14.
Pathogens ; 9(11)2020 Oct 23.
Article in English | MEDLINE | ID: mdl-33114269

ABSTRACT

Mycoplasma (M.) bovis is an important pathogen of cattle implicated in a broad range of clinical manifestations that adversely impacts livestock production worldwide. In the absence of a safe, effective commercial vaccine in Europe, the reported reduced susceptibility to antimicrobials for this organism has contributed to difficulties in controlling infection. Despite global presence, some countries have only recently experienced outbreaks of this pathogen. In the present study, M. bovis isolates collected in Denmark between 1981 and 2016 were characterized to determine (i) genetic diversity and phylogenetic relationships using whole genome sequencing and various sequence-based typing methods and (ii) patterns of antimicrobial resistance compared to other European isolates. The M. bovis population in Denmark was found to be highly homogeneous genomically and with respect to the antimicrobial resistance profile. Previously dominated by an old genotype shared by many other countries (ST17 in the PubMLST legacy scheme), a new predominant type represented by ST94-adh1 has emerged. The same clone is also found in Sweden and Finland, where M. bovis introduction is more recent. Although retrieved from the Netherlands, it appears absent from France, two countries with a long history of M. bovis infection where the M. bovis population is more diverse.

15.
J Anim Sci ; 98(6)2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32479635

ABSTRACT

The objective of this study is to investigate the effect of a maternal antibiotic administration during the last week of gestation on the early life intestinal development in neonatal piglets. Colonization of the gut with bacteria starts during birth and plays a major role in the intestinal and immunological development of the intestine. We demonstrate that maternal interventions induced changes in the sows (n = 6 to 8 per treatment) fecal microbiota diversity around birth (P < 0.001, day 1). Whole-genome microarray analysis in small intestinal samples of 1-d old piglets (n = 6 to 8 per treatment) showed significantly expressed genes (Padj < 0.05) which were involved in processes of tight junction formation and immunoglobulin production. Furthermore, when performing morphometry analysis, the number of goblet cells in jejunum was significantly (P < 0.001) lower in piglets from amoxicillin administered sows compared with the respective control piglets. Both significantly expressed genes (Padj < 0.05) and significant morphometry data (jejunum P < 0.05 and ileum P < 0.01) indicate that the crypts of piglets from amoxicillin administered sows deepen around weaning (day 26) as an effect of the amoxicillin administration in sows. The latter might imply that the intestinal development of piglets was delayed by maternal antibiotic administration. Taken together, these results show that maternally oral antibiotic administration changes in early life can affect intestinal development of the offspring piglets for a period of at least 5 wk after the maternal antibiotic administration was finished. These results show that modulation of the neonatal intestine is possible by maternal interventions.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Bacteria/drug effects , Microbiota/drug effects , Swine/physiology , Animals , Animals, Newborn , Bacteria/growth & development , Feces/microbiology , Female , Gastrointestinal Tract/drug effects , Gastrointestinal Tract/growth & development , Gastrointestinal Tract/microbiology , Pregnancy , Swine/growth & development , Swine/microbiology , Weaning
16.
Euro Surveill ; 25(23)2020 06.
Article in English | MEDLINE | ID: mdl-32553059

ABSTRACT

Respiratory disease and increased mortality occurred in minks on two farms in the Netherlands, with interstitial pneumonia and SARS-CoV-2 RNA in organ and swab samples. On both farms, at least one worker had coronavirus disease-associated symptoms before the outbreak. Variations in mink-derived viral genomes showed between-mink transmission and no infection link between the farms. Inhalable dust contained viral RNA, indicating possible exposure of workers. One worker is assumed to have attracted the virus from mink.


Subject(s)
Coronavirus Infections/diagnosis , Coronavirus/isolation & purification , Disease Outbreaks/prevention & control , Farms , Mink , Pneumonia, Viral/diagnosis , RNA, Viral/genetics , Sequence Analysis, RNA/veterinary , Animals , Antibodies, Viral/immunology , Betacoronavirus/immunology , COVID-19 , Coronavirus/genetics , Coronavirus Infections/transmission , Coronavirus Infections/veterinary , Disease Outbreaks/veterinary , Genome, Viral , Netherlands , Pandemics/veterinary , Pneumonia, Viral/transmission , Pneumonia, Viral/veterinary , SARS-CoV-2 , Severe Acute Respiratory Syndrome/epidemiology
17.
BMC Vet Res ; 16(1): 51, 2020 Feb 11.
Article in English | MEDLINE | ID: mdl-32046722

ABSTRACT

BACKGROUND: Porcine teschovirus (PTV) circulates among wild and domesticated pig populations without causing clinical disease, however neuroinvasive strains have caused high morbidity and mortality in the past. In recent years, several reports appeared with viral agents as a cause for neurologic signs in weanling and growing pigs among which PTV and new strains of PTV were described. CASE PRESENTATION: On two unrelated pig farms in the Netherlands the weanling pig population showed a staggering gate, which developed progressively to paresis or paralysis of the hind legs with a morbidity up to 5%. After necropsy we diagnosed a non-suppurative encephalomyelitis on both farms, which was most consistent with a viral infection. PTV was detected within the central nervous system by qPCR. From both farms PTV full-length genomes were sequenced, which clustered closely with PTV-3 (98%) or PTV-11 (85%). Other common swine viruses were excluded by qPCR and sequencing of the virus. CONCLUSION: Our results show that new neuroinvasive PTV strains still emerge in pigs in the Netherlands. Further research is needed to investigate the impact of PTV and other viral agents causing encephalomyelitis within wild and domestic pig populations supported by the awareness of veterinarians.


Subject(s)
Encephalomyelitis/veterinary , Picornaviridae Infections/veterinary , Swine Diseases/virology , Teschovirus/classification , Animals , Encephalomyelitis/epidemiology , Encephalomyelitis/virology , Netherlands/epidemiology , Phylogeny , Picornaviridae Infections/epidemiology , Picornaviridae Infections/virology , Swine , Swine Diseases/epidemiology , Teschovirus/genetics , Teschovirus/isolation & purification
18.
J Virol ; 94(8)2020 03 31.
Article in English | MEDLINE | ID: mdl-31969434

ABSTRACT

Low-pathogenicity avian influenza (LPAI) viruses of subtypes H5 and H7 have the ability to spontaneously mutate to highly pathogenic (HPAI) virus variants, causing high mortality in poultry. The highly pathogenic phenotype is caused by mutation of the hemagglutinin (HA) cleavage site, but additional mutations may play a role. Evidence from the field for the switch to high pathogenicity remains scarce. This study provides direct evidence for LPAI-to-HPAI virus mutation during H7N3 infection of a turkey farm in the Netherlands. No severe clinical symptoms were reported at the farm, but deep sequencing of isolates from the infected turkeys revealed a minority of HPAI virus sequences (0.06%) in the virus population. The HPAI virus contained a 12-nucleotide insertion in the HA cleavage site that was likely introduced by a single event as no intermediates with shorter inserts were identified. This suggests nonhomologous recombination as the mechanism of insertion. Analysis of different organs of the infected turkeys showed the largest amount of HPAI virus in the lung (4.4%). The HPAI virus was rapidly selected in experimentally infected chickens after both intravenous and intranasal/intratracheal inoculation with a mixed virus preparation. Full-genome sequencing revealed that both pathotypes contained a deletion in the stalk region of the neuraminidase protein. We identified additional mutations in HA and polymerase basic protein 1 (PB1) in the HPAI virus, which were already present as minority variants in the LPAI virus population. Our findings provide more insight into the molecular changes and mechanisms involved in the emergence and selection of HPAI viruses.IMPORTANCE Low-pathogenicity avian influenza (LPAI) viruses circulate in wild birds and can be transmitted to poultry. LPAI viruses can mutate to become highly pathogenic avian influenza (HPAI) viruses causing severe disease and death in poultry. Little is known about this switch to high pathogenicity. We isolated an LPAI H7N3 virus from an infected turkey farm and showed that this contains small amounts of HPAI virus. The HPAI virus rapidly outcompeted the LPAI virus in chickens that were experimentally infected with this mixture of viruses. We analyzed the genome sequences of the LPAI and HPAI viruses and identified several changes that may be important for a virus to become highly pathogenic. This knowledge may be used for timely identification of LPAI viruses that pose a risk of becoming highly pathogenic in the field.


Subject(s)
Influenza A Virus, H7N3 Subtype/pathogenicity , Influenza in Birds/virology , Poultry Diseases/virology , Animals , Animals, Wild/virology , Chickens/virology , Disease Models, Animal , Genetic Variation , Hemagglutinins/genetics , Influenza A Virus, H7N3 Subtype/genetics , Influenza in Birds/pathology , Influenza in Birds/transmission , Lung/pathology , Mutation , Netherlands , Poultry , Poultry Diseases/pathology , RNA, Viral/chemistry , RNA, Viral/genetics , Spleen/pathology , Turkeys/virology
19.
Plasmid ; 102: 51-55, 2019 03.
Article in English | MEDLINE | ID: mdl-30885787

ABSTRACT

One of the factors that can affect conjugation of IncI1 plasmids, amongst others, is the genetic region known as the shufflon. This multiple inversion system modifies the pilus tip proteins used during conjugation, thus affecting the affinity for different recipient cells. Although recombination is known to occur in in vitro conditions, little is known about the regulation and the extent of recombination that occurs. To measure the recombination of the shufflon, we have amplified the entire shufflon region and sequenced the amplicons using nanopore long-read sequencing. This method was effective to determine the order of the segments of the shufflon and allow for the analysis of the shufflon variants that are present in a heterogeneous pool of templates. Analysis was performed over different growth phases and after addition of cefotaxime. Furthermore, analysis was performed in different E. coli host cells to determine if recombination is likely to be influenced. Recombination of the shufflon was constantly ongoing in all conditions that were measured, although no differences in the amount of different shufflon variants or the rate at which novel variants were formed could be found. As previously reported, some variants were abundant in the population while others were scarce. This leads to the conclusion that the shufflon is continuously recombining at a constant rate, or that the method used here was not sensitive enough to detect differences in this rate. For one of the plasmids, the host cell appeared to have an effect on the specific shufflon variants that were formed which were not predominant in another host, indicating that host factors may be involved. As previously reported, the pilV-A and pilV-A' ORFs are formed at higher frequencies than other pilV ORFs. These results demonstrate that the recombination that occurs within the shufflon is not random. While any regulation of the shufflon affected by these in vitro conditions could not be revealed, the method of amplifying large regions for long-read sequencing for the analysis of multiple inversion systems proved effective.


Subject(s)
Escherichia coli/growth & development , Escherichia coli/genetics , Gene Rearrangement/genetics , Plasmids/genetics , Animals , Humans , Plasmids/isolation & purification
20.
Article in English | MEDLINE | ID: mdl-30910900

ABSTRACT

Food for human consumption is screened widely for the presence of antibiotic-resistant bacteria to assess the potential for transfer of resistant bacteria to the general population. Here, we describe an Enterobacter cloacae complex isolated from imported seafood that encodes two carbapenemases on two distinct plasmids. Both enzymes belong to Ambler class A ß-lactamases, the previously described IMI-2 and a novel family designated FLC-1. The hydrolytic activity of the novel enzyme against aminopenicillins, cephalosporins, and carbapenems was determined.


Subject(s)
Bacterial Proteins/metabolism , Enterobacter cloacae/enzymology , beta-Lactamases/metabolism , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Cephalosporins/metabolism , Enterobacter/drug effects , Enterobacter cloacae/drug effects , Microbial Sensitivity Tests , Plasmids/genetics , beta-Lactamases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...