Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Radiat Oncol ; 15(1): 41, 2020 Feb 18.
Article in English | MEDLINE | ID: mdl-32070386

ABSTRACT

BACKGROUND: The STAR-TReC trial is an international multi-center, randomized, phase II study assessing the feasibility of short-course radiotherapy or long-course chemoradiotherapy as an alternative to total mesorectal excision surgery. A new target volume is used for both (chemo)radiotherapy arms which includes only the mesorectum. The treatment planning QA revealed substantial variation in dose to organs at risk (OAR) between centers. Therefore, the aim of this study was to determine the treatment plan variability in terms of dose to OAR and assess the effect of a national study group meeting on the quality and variability of treatment plans for mesorectum-only planning for rectal cancer. METHODS: Eight centers produced 25 × 2 Gy treatment plans for five cases. The OAR were the bowel cavity, bladder and femoral heads. A study group meeting for the participating centers was organized to discuss the planning results. At the meeting, the values of the treatment plan DVH parameters were distributed among centers so that results could be compared. Subsequently, the centers were invited to perform replanning if they considered this to be necessary. RESULTS: All treatment plans, both initial planning and replanning, fulfilled the target constraints. Dose to OAR varied considerably for the initial planning, especially for dose levels below 20 Gy, indicating that there was room for trade-offs between the defined OAR. Five centers performed replanning for all cases. One center did not perform replanning at all and two centers performed replanning on two and three cases, respectively. On average, replanning reduced the bowel cavity V20Gy by 12.6%, bowel cavity V10Gy by 22.0%, bladder V35Gy by 14.7% and bladder V10Gy by 10.8%. In 26/30 replanned cases the V10Gy of both the bowel cavity and bladder was lower, indicating an overall lower dose to these OAR instead of a different trade-off. In addition, the bowel cavity V10Gy and V20Gy showed more similarity between centers. CONCLUSIONS: Dose to OAR varied considerably between centers, especially for dose levels below 20 Gy. The study group meeting and the distribution of the initial planning results among centers resulted in lower dose to the defined OAR and reduced variability between centers after replanning. TRIAL REGISTRATION: The STAR-TReC trial, ClinicalTrials.gov Identifier: NCT02945566. Registered 26 October 2016, https://clinicaltrials.gov/ct2/show/NCT02945566).


Subject(s)
Organ Sparing Treatments/methods , Organs at Risk/radiation effects , Quality Assurance, Health Care/standards , Radiotherapy Planning, Computer-Assisted/standards , Rectal Neoplasms/radiotherapy , Rectum/radiation effects , Humans , Netherlands , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated/methods
2.
Article in English | MEDLINE | ID: mdl-32095545

ABSTRACT

BACKGROUND AND PURPOSE: Organ preservation strategies are increasingly being explored for early rectal cancer. This requires revision of target volumes according to disease stage, as well as new guidelines for treatment planning. We conducted an international, multicentre dose planning study to develop robust planning objectives for modern radiotherapy of a novel mesorectal-only target volume, as implemented in the STAR-TReC trial (NCT02945566). MATERIALS AND METHODS: The published literature was used to establish relevant dose levels for organ at risk (OAR) plan optimisation. Ten representative patients with early rectal cancer were identified. Treatment scans had mesorectal target volumes as well as bowel cavity, bladder and femoral heads outlined, and were circulated amongst the three participating institutions. Each institution produced plans for short course (SCRT, 5 × 5 Gy) and long course (LCRT, 25 × 2 Gy) treatment, using volumetric modulated arc therapy on different dose planning systems. Optimisation objectives for OARs were established by determining dose metric objectives achievable for ≥90% of plans. RESULTS: Sixty plans, all fulfilling target coverage criteria, were produced. The planning results and literature review suggested optimisation objectives for SCRT: V 10Gy < 180 cm3, V 18Gy < 110 cm3, V 23Gy < 85 cm3 for bowel cavity; V 21Gy < 15% and V 25Gy < 5% for bladder; and V 12.5Gy < 11% for femoral heads. Corresponding objectives for LCRT: V 20Gy < 180 cm3, V 30Gy < 130 cm3, V 45Gy < 90 cm3 for bowel cavity; V 35Gy < 22% and V 50Gy < 7% for bladder; and V 25Gy < 15% for femoral heads. Constraints were validated across all three institutions. CONCLUSION: We utilized a multicentre planning study approach to develop robust planning objectives for mesorectal radiotherapy for early rectal cancer.

SELECTION OF CITATIONS
SEARCH DETAIL
...