Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sleep ; 47(6)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38366843

ABSTRACT

STUDY OBJECTIVES: Sleep disturbances are common in adolescence and associated with a host of negative outcomes. Here, we assess associations between multifaceted sleep disturbances and a broad set of psychological, cognitive, and demographic variables using a data-driven approach, canonical correlation analysis (CCA). METHODS: Baseline data from 9093 participants from the Adolescent Brain Cognitive Development (ABCD) Study were examined using CCA, a multivariate statistical approach that identifies many-to-many associations between two sets of variables by finding combinations for each set of variables that maximize their correlation. We combined CCA with leave-one-site-out cross-validation across ABCD sites to examine the robustness of results and generalizability to new participants. The statistical significance of canonical correlations was determined by non-parametric permutation tests that accounted for twin, family, and site structure. To assess the stability of the associations identified at baseline, CCA was repeated using 2-year follow-up data from 4247 ABCD Study participants. RESULTS: Two significant sets of associations were identified: (1) difficulty initiating and maintaining sleep and excessive daytime somnolence were strongly linked to nearly all domains of psychopathology (r2 = 0.36, p < .0001); (2) sleep breathing disorders were linked to BMI and African American/black race (r2 = 0.08, p < .0001). These associations generalized to unseen participants at all 22 ABCD sites and were replicated using 2-year follow-up data. CONCLUSIONS: These findings underscore interwoven links between sleep disturbances in early adolescence and psychological, social, and demographic factors.


Subject(s)
Sleep Wake Disorders , Humans , Adolescent , Male , Female , Sleep Wake Disorders/epidemiology , Disorders of Excessive Somnolence/epidemiology , Sleep Initiation and Maintenance Disorders , Adolescent Development/physiology , Cognition/physiology
2.
J Soc Pers Relat ; 40(1): 277-287, 2023 Feb.
Article in English | MEDLINE | ID: mdl-37304834

ABSTRACT

Background: Social skill is a critical asset for adolescents, and early mother-child attachment is an essential contributor to their development. While less secure mother-child attachment is a known risk factor for adolescent social development, the protective factor of neighborhood context in buffering this risk is still not well understood. Research Design: This study used longitudinal data from the Fragile Families and Child Wellbeing Study (n = 1,876). Adolescent social skills (at age 15) were examined as a function of early attachment security and neighborhood social cohesion (age 3). Results: Children with higher mother-child attachment security at age three had higher adolescent social skills at age 15. The findings show that there was an interaction effect such that neighborhood social cohesion buffered the relationship between mother-child attachment security and adolescent social skills. Conclusion: Our study highlights that early mother-child attachment security can be promotive for cultivating adolescent social skills. Furthermore, neighborhood social cohesion can be protective among children with lower mother-child attachment security.

3.
Dev Cogn Neurosci ; 61: 101253, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37182338

ABSTRACT

Unstable and unpredictable environments are linked to risk for psychopathology, but the underlying neural mechanisms that explain how instability relate to subsequent mental health concerns remain unclear. In particular, few studies have focused on the association between instability and white matter structures despite white matter playing a crucial role for neural development. In a longitudinal sample recruited from a population-based study (N = 237), household instability (residential moves, changes in household composition, caregiver transitions in the first 5 years) was examined in association with adolescent structural network organization (network integration, segregation, and robustness of white matter connectomes; Mage = 15.87) and young adulthood anxiety and depression (six years later). Results indicate that greater instability related to greater global network efficiency, and this association remained after accounting for other types of adversity (e.g., harsh parenting, neglect, food insecurity). Moreover, instability predicted increased depressive symptoms via increased network efficiency even after controlling for previous levels of symptoms. Exploratory analyses showed that structural connectivity involving the left fronto-lateral and temporal regions were most strongly related to instability. Findings suggest that structural network efficiency relating to household instability may be a neural mechanism of risk for later depression and highlight the ways in which instability modulates neural development.


Subject(s)
Depression , White Matter , Humans , Child, Preschool , Adolescent , Young Adult , Adult , Longitudinal Studies , Depression/psychology , Family Characteristics , Neural Networks, Computer
4.
J Child Psychol Psychiatry ; 64(6): 918-929, 2023 06.
Article in English | MEDLINE | ID: mdl-36579796

ABSTRACT

BACKGROUND: Stressful events, such as the COVID-19 pandemic, are major contributors to anxiety and depression, but only a subset of individuals develop psychopathology. In a population-based sample (N = 174) with a high representation of marginalized individuals, this study examined adolescent functional network connectivity as a marker of susceptibility to anxiety and depression in the context of adverse experiences. METHODS: Data-driven network-based subgroups were identified using an unsupervised community detection algorithm within functional neural connectivity. Neuroimaging data collected during emotion processing (age 15) were extracted from a priori regions of interest linked to anxiety and depression. Symptoms were self-reported at ages 15, 17, and 21 (during COVID-19). During COVID-19, participants reported on pandemic-related economic adversity. Differences across subgroup networks were first examined, then subgroup membership and subgroup-adversity interaction were tested to predict change in symptoms over time. RESULTS: Two subgroups were identified: Subgroup A, characterized by relatively greater neural network variation (i.e., heterogeneity) and density with more connections involving the amygdala, subgenual cingulate, and ventral striatum; and the more homogenous Subgroup B, with more connections involving the insula and dorsal anterior cingulate. Accounting for initial symptoms, subgroup A individuals had greater increases in symptoms across time (ß = .138, p = .042), and this result remained after adjusting for additional covariates (ß = .194, p = .023). Furthermore, there was a subgroup-adversity interaction: compared with Subgroup B, Subgroup A reported greater anxiety during the pandemic in response to reported economic adversity (ß = .307, p = .006), and this remained after accounting for initial symptoms and many covariates (ß = .237, p = .021). CONCLUSIONS: A subgrouping algorithm identified young adults who were susceptible to adversity using their personalized functional network profiles derived from a priori brain regions. These results highlight potential prospective neural signatures involving heterogeneous emotion networks that predict individuals at the greatest risk for anxiety when experiencing adverse events.


Subject(s)
COVID-19 , Pandemics , Young Adult , Humans , Adolescent , Prospective Studies , Brain Mapping/methods , Magnetic Resonance Imaging/methods , Anxiety/epidemiology , Brain
5.
Neuroimage Rep ; 2(4)2022 Dec.
Article in English | MEDLINE | ID: mdl-36561641

ABSTRACT

Increasing evidence demonstrates that environmental factors meaningfully impact the development of the brain (Hyde et al., 2020; McEwen and Akil, 2020). Recent work from the Adolescent Brain Cognitive Development (ABCD) Study® suggests that puberty may indirectly account for some association between the family environment and brain structure and function (Thijssen et al., 2020). However, a limited number of large studies have evaluated what, how, and why environmental factors impact neurodevelopment. When these topics are investigated, there is typically inconsistent operationalization of variables between studies which may be measuring different aspects of the environment and thus different associations in the analytic models. Multiverse analyses (Steegen et al., 2016) are an efficacious technique for investigating the effect of different operationalizations of the same construct on underlying interpretations. While one of the assets of Thijssen et al. (2020) was its large sample from the ABCD data, the authors used an early release that contained 38% of the full ABCD sample. Then, the analyses used several 'researcher degrees of freedom' (Gelman and Loken, 2014) to operationalize key independent, mediating and dependent variables, including but not limited to, the use of a latent factor of preadolescents' environment comprised of different subfactors, such as parental monitoring and child-reported family conflict. While latent factors can improve reliability of constructs, the nuances of each subfactor and measure that comprise the environment may be lost, making the latent factors difficult to interpret in the context of individual differences. This study extends the work of Thijssen et al. (2020) by evaluating the extent to which the analytic choices in their study affected their conclusions. In Aim 1, using the same variables and models, we replicate findings from the original study using the full sample in Release 3.0. Then, in Aim 2, using a multiverse analysis we extend findings by considering nine alternative operationalizations of family environment, three of puberty, and five of brain measures (total of 135 models) to evaluate the impact on conclusions from Aim 1. In these results, 90% of the directions of effects and 60% of the p-values (e.g. p > .05 and p < .05) across effects were comparable between the two studies. However, raters agreed that only 60% of the effects had replicated. Across the multiverse analyses, there was a degree of variability in beta estimates across the environmental variables, and lack of consensus between parent reported and child reported pubertal development for the indirect effects. This study demonstrates the challenge in defining which effects replicate, the nuance across environmental variables in the ABCD data, and the lack of consensus across parent and child reported puberty scales in youth.

6.
Psychoneuroendocrinology ; 144: 105855, 2022 10.
Article in English | MEDLINE | ID: mdl-35835021

ABSTRACT

Threat-related amygdala reactivity and the activation of the Hypothalamic-Pituitary-Adrenal (HPA) axis have been linked to negative psychiatric outcomes. The amygdala and HPA axis have bidirectional connections, suggesting that functional variation in one system may influence the other. However, research on the functional associations between these systems has demonstrated mixed findings, potentially due to small sample sizes and cortisol sampling and data analytic procedures that investigate only pre-post differences in cortisol rather than the specific phases of the cortisol stress response. Further, previous research has primarily utilized samples of adults of mostly European descent, limiting generalizability to those of other ethnoracial identities and ages. Therefore, studies addressing these limitations are needed in order to investigate the functional relations between amygdala reactivity to threat and HPA axis stress responsivity. Using a sample of 159 adolescents from a diverse cohort (75% African American, ages 15-17 years), the present study evaluated associations between amygdala reactivity during socioemotional processing using fMRI and HPA axis reactivity to a socially-evaluative cold pressor task. Greater amygdala activation to fearful and neutral faces was associated with greater cortisol peak values and steeper activation slope. As cortisol peak values and cortisol activation slope capture the intensity of the cortisol stress response, these data suggest that greater activation of the amygdala in response to social distress and ambiguity among adolescents may be related to hyper-reactivity of the HPA axis.


Subject(s)
Hydrocortisone , Pituitary-Adrenal System , Adolescent , Adult , Amygdala , Humans , Hypothalamo-Hypophyseal System , Saliva , Stress, Psychological
7.
J Cogn Neurosci ; 34(10): 1866-1891, 2022 09 01.
Article in English | MEDLINE | ID: mdl-34942644

ABSTRACT

Accumulating literature has linked poverty to brain structure and function, particularly in affective neural regions; however, few studies have examined associations with structural connections or the importance of developmental timing of exposure. Moreover, prior neuroimaging studies have not used a proximal measure of poverty (i.e., material hardship, which assesses food, housing, and medical insecurity) to capture the lived experience of growing up in harsh economic conditions. The present investigation addressed these gaps collectively by examining the associations between material hardship (ages 1, 3, 5, 9, and 15 years) and white matter connectivity of frontolimbic structures (age 15 years) in a low-income sample. We applied probabilistic tractography to diffusion imaging data collected from 194 adolescents. Results showed that material hardship related to amygdala-prefrontal, but not hippocampus-prefrontal or hippocampus-amygdala, white matter connectivity. Specifically, hardship during middle childhood (ages 5 and 9 years) was associated with greater connectivity between the amygdala and dorsomedial pFC, whereas hardship during adolescence (age 15 years) was related to reduced amygdala-orbitofrontal (OFC) and greater amygdala-subgenual ACC connectivity. Growth curve analyses showed that greater increases of hardship across time were associated with both greater (amygdala-subgenual ACC) and reduced (amygdala-OFC) white matter connectivity. Furthermore, these effects remained above and beyond other types of adversity, and greater hardship and decreased amygdala-OFC connectivity were related to increased anxiety and depressive symptoms. Results demonstrate that the associations between material hardship and white matter connections differ across key prefrontal regions and developmental periods, providing support for potential windows of plasticity for structural circuits that support emotion processing.


Subject(s)
White Matter , Adolescent , Amygdala/diagnostic imaging , Child , Child, Preschool , Humans , Magnetic Resonance Imaging/methods , Neural Pathways/diagnostic imaging , Prefrontal Cortex/diagnostic imaging , White Matter/diagnostic imaging
9.
Dev Cogn Neurosci ; 38: 100675, 2019 08.
Article in English | MEDLINE | ID: mdl-31279245

ABSTRACT

In the United States over one-third of the population, including children and adolescents, are overweight or obese. Despite the prevalence of obesity, few studies have examined how food cravings and the ability to regulate them change throughout development. Here, we addressed this gap in knowledge by examining structural brain and behavioral changes associated with regulation of craving across development. In a longitudinal design, individuals ages 6-26 completed two structural scans as well as a behavioral task where they used a cognitive regulatory strategy to decrease the appetitive value of foods. Behaviorally, we found that the ability to regulate craving improved with age. Neurally, improvements in regulatory ability were associated with cortical thinning in medial and lateral prefrontal cortex. We also found that models with cortical thickness measurements and age chosen by a lasso-based variable selection method could predict an individual's regulation behavior better than age and other behavioral factors alone. Additionally, when controlling for age, smaller ventral striatal volumes were associated with higher body mass index and predicted greater increases in weight two years later. Taken together, these results demonstrate a role for structural brain changes in supporting the ability to resist cravings for appetitive foods across development.


Subject(s)
Adolescent Development/physiology , Brain/growth & development , Child Development/physiology , Craving/physiology , Photic Stimulation/methods , Adolescent , Adult , Brain/diagnostic imaging , Child , Female , Humans , Longitudinal Studies , Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging/trends , Male , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...