Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Viruses ; 15(10)2023 10 07.
Article in English | MEDLINE | ID: mdl-37896838

ABSTRACT

Cold-active bacteriophages are bacterial viruses that infect and replicate at low temperatures (≤4 °C). Understanding remains limited of how cold-active phage-host systems sustain high viral abundance despite the persistently low temperatures in pelagic sediments in polar seas. In this study, two Pseudoalteromonas phages, ACA1 and ACA2, were isolated from sediment core samples of the continental shelf in the western Arctic Ocean. These phages exhibited successful propagation at a low temperature of 1 °C and displayed typical myovirus morphology with isometric icosahedral heads and contractile tails. The complete genome sequences of phages ACA1 and ACA2 were 36,825 bp and 36,826 bp in size, respectively, sharing almost the same gene content. These are temperate phages encoding lysogeny-related proteins such as anti-repressor, immunity repressor and integrase. The absence of cross-infection between the host strains, which were genomically distinct Pseudoalteromonas species, can likely be attributed to heavy divergence in the anti-receptor apparently mediated by an associated diversity-generating retroelement. HHpred searching identified genes for all of the structural components of a P2-like phage (family Peduoviridae), although the whole of the Peduoviridae family appeared to be divided between two anciently diverged tail modules. In contrast, Blast matching and whole genome tree analysis are dominated by a nonstructural gene module sharing high similarity with Pseudoalteromonas phage C5a (founder of genus Catalunyavirus). This study expands the knowledge of diversity of P2-like phages known to inhabit Peudoalteromonas and demonstrates their presence in the Arctic niche.


Subject(s)
Bacteriophages , Pseudoalteromonas , Bacteriophages/genetics , Pseudoalteromonas/genetics , Genome, Viral , Lysogeny , Genomics , Phylogeny
2.
Viruses ; 15(7)2023 06 29.
Article in English | MEDLINE | ID: mdl-37515163

ABSTRACT

ΦGT1 is a lytic podovirus of an alphaproteobacterial Sulfitobacter species, with few closely matching sequences among characterized phages, thus defying a useful description by simple sequence clustering methods. The history of the ΦGT1 core structure module was reconstructed using timetrees, including numerous related prospective prophages, to flesh out the evolutionary lineages spanning from the origin of the ejectosomal podovirus >3.2 Gya to the present genes of ΦGT1 and its closest relatives. A peculiarity of the ΦGT1 structural proteome is that it contains two paralogous tubular tail A (tubeA) proteins. The origin of the dual tubeA arrangement was traced to a recombination between two more ancient podoviral lineages occurring ~0.7 Gya in the alphaproteobacterial order Rhizobiales. Descendants of the ancestral dual A recombinant were tracked forward forming both temperate and lytic phage clusters and exhibiting both vertical transmission with patchy persistence and horizontal transfer with respect to host taxonomy. The two ancestral lineages were traced backward, making junctions with a major metagenomic podoviral family, the LUZ24-like gammaproteobacterial phages, and Myxococcal phage Mx8, and finally joining near the origin of podoviruses with P22. With these most conservative among phage genes, deviations from uncomplicated vertical and nonrecombinant descent are numerous but countable. The use of timetrees allowed conceptualization of the phage's evolution in the context of a sequence of ancestors spanning the time of life on Earth.


Subject(s)
Bacteriophages , Podoviridae , Prospective Studies , Genome, Viral , Bacteriophages/genetics , Bacteriophages/chemistry , Podoviridae/genetics , Prophages/genetics
3.
Int J Mol Sci ; 24(10)2023 May 18.
Article in English | MEDLINE | ID: mdl-37240285

ABSTRACT

Diversity of phage propagation, physical properties, and assembly promotes the use of phages in ecological studies and biomedicine. However, observed phage diversity is incomplete. Bacillus thuringiensis siphophage, 0105phi-7-2, first described here, significantly expands known phage diversity, as seen via in-plaque propagation, electron microscopy, whole genome sequencing/annotation, protein mass spectrometry, and native gel electrophoresis (AGE). Average plaque diameter vs. plaque-supporting agarose gel concentration plots reveal unusually steep conversion to large plaques as agarose concentration decreases below 0.2%. These large plaques sometimes have small satellites and are made larger by orthovanadate, an ATPase inhibitor. Phage head-host-cell binding is observed by electron microscopy. We hypothesize that this binding causes plaque size-increase via biofilm evolved, ATP stimulated ride-hitching on motile host cells by temporarily inactive phages. Phage 0105phi7-2 does not propagate in liquid culture. Genomic sequencing/annotation reveals history as temperate phage and distant similarity, in a virion-assembly gene cluster, to prototypical siphophage SPP1 of Bacillus subtilis. Phage 0105phi7-2 is distinct in (1) absence of head-assembly scaffolding via either separate protein or classically sized, head protein-embedded peptide, (2) producing partially condensed, head-expelled DNA, and (3) having a surface relatively poor in AGE-detected net negative charges, which is possibly correlated with observed low murine blood persistence.


Subject(s)
Bacillus thuringiensis , Bacteriophages , Animals , Mice , Bacillus thuringiensis/genetics , Sepharose , Bacteriophages/genetics , DNA , Whole Genome Sequencing , Genome, Viral
4.
Viruses ; 13(10)2021 10 18.
Article in English | MEDLINE | ID: mdl-34696524

ABSTRACT

Phage G is recognized as having a remarkably large genome and capsid size among isolated, propagated phages. Negative stain electron microscopy of the host-phage G interaction reveals tail sheaths that are contracted towards the distal tip and decoupled from the head-neck region. This is different from the typical myophage tail contraction, where the sheath contracts upward, while being linked to the head-neck region. Our cryo-EM structures of the non-contracted and contracted tail sheath show that: (1) The protein fold of the sheath protein is very similar to its counterpart in smaller, contractile phages such as T4 and phi812; (2) Phage G's sheath structure in the non-contracted and contracted states are similar to phage T4's sheath structure. Similarity to other myophages is confirmed by a comparison-based study of the tail sheath's helical symmetry, the sheath protein's evolutionary timetree, and the organization of genes involved in tail morphogenesis. Atypical phase G tail contraction could be due to a missing anchor point at the upper end of the tail sheath that allows the decoupling of the sheath from the head-neck region. Explaining the atypical tail contraction requires further investigation of the phage G sheath anchor points.


Subject(s)
Myoviridae/ultrastructure , Viral Tail Proteins/ultrastructure , Bacteriophages/metabolism , Bacteriophages/ultrastructure , Capsid/metabolism , Capsid Proteins/metabolism , Cryoelectron Microscopy/methods , Myoviridae/genetics , Viral Tail Proteins/genetics , Viral Tail Proteins/metabolism , Virion/metabolism , Virion/ultrastructure
5.
Nat Commun ; 12(1): 731, 2021 02 02.
Article in English | MEDLINE | ID: mdl-33531504

ABSTRACT

SAMHD1 impedes infection of myeloid cells and resting T lymphocytes by retroviruses, and the enzymatic activity of the protein-dephosphorylation of deoxynucleotide triphosphates (dNTPs)-implicates enzymatic dNTP depletion in innate antiviral immunity. Here we show that the allosteric binding sites of the enzyme are plastic and can accommodate oligonucleotides in place of the allosteric activators, GTP and dNTP. SAMHD1 displays a preference for oligonucleotides containing phosphorothioate bonds in the Rp configuration located 3' to G nucleotides (GpsN), the modification pattern that occurs in a mechanism of antiviral defense in prokaryotes. In the presence of GTP and dNTPs, binding of GpsN-containing oligonucleotides promotes formation of a distinct tetramer with mixed occupancy of the allosteric sites. Mutations that impair formation of the mixed-occupancy complex abolish the antiretroviral activity of SAMHD1, but not its ability to deplete dNTPs. The findings link nucleic acid binding to the antiretroviral activity of SAMHD1, shed light on the immunomodulatory effects of synthetic phosphorothioated oligonucleotides and raise questions about the role of nucleic acid phosphorothioation in human innate immunity.


Subject(s)
Nucleotides/metabolism , SAM Domain and HD Domain-Containing Protein 1/metabolism , Humans , Immunity, Innate/genetics , Immunity, Innate/physiology , Mutation/genetics , Oxidoreductases Acting on CH-CH Group Donors/genetics , Oxidoreductases Acting on CH-CH Group Donors/metabolism , SAM Domain and HD Domain-Containing Protein 1/genetics
6.
Microbiol Resour Announc ; 9(33)2020 Aug 13.
Article in English | MEDLINE | ID: mdl-32817157

ABSTRACT

The Sulfitobacter bacteria are ubiquitous and important players in organic sulfur cycling in marine environments. Here, we report the complete genome sequence of ϕGT1 infecting Sulfitobacter sp. HGT1, both of which were isolated from coastal sediment. ϕGT1 has a 40,019-bp genome containing 69 predicted protein-encoding genes.

7.
BMC Genomics ; 19(1): 625, 2018 Aug 22.
Article in English | MEDLINE | ID: mdl-30134835

ABSTRACT

BACKGROUND: Pontimonas salivibrio strain CL-TW6T (=KCCM 90105 = JCM18206) was characterized as the type strain of a new genus within the Actinobacterial family Microbacteriaceae. It was isolated from a coastal marine environment in which members of Microbactericeae have not been previously characterized. RESULTS: The genome of P. salivibrio CL-TW6T was a single chromosome of 1,760,810 bp. Genomes of this small size are typically found in bacteria growing slowly in oligotrophic zones and said to be streamlined. Phylogenetic analysis showed it to represent a lineage originating in the Microbacteriaceae radiation occurring before the snowball Earth glaciations, and to have a closer relationship with some streamlined bacteria known through metagenomic data. Several genomic characteristics typical of streamlined bacteria are found: %G + C is lower than non-streamlined members of the phylum; there are a minimal number of rRNA and tRNA genes, fewer paralogs in most gene families, and only two sigma factors; there is a noticeable absence of some nonessential metabolic pathways, including polyketide synthesis and catabolism of some amino acids. There was no indication of any phage genes or plasmids, however, a system of active insertion elements was present. P. salivibrio appears to be unusual in having polyrhamnose-based cell wall oligosaccharides instead of mycolic acid or teichoic acid-based oligosaccharides. Oddly, it conducts sulfate assimilation apparently for sulfating cell wall components, but not for synthesizing amino acids. One gene family it has more of, rather than fewer of, are toxin/antitoxin systems, which are thought to down-regulate growth during nutrient deprivation or other stressful conditions. CONCLUSIONS: Because of the relatively small number of paralogs and its relationship to the heavily characterized Mycobacterium tuberculosis, we were able to heavily annotate the genome of P. salivibrio CL-TW6T. Its streamlined status and relationship to streamlined metagenomic constructs makes it an important reference genome for study of the streamlining concept. The final evolutionary trajectory of CL-TW6 T was to adapt to growth in a non-oligotrophic coastal zone. To understand that adaptive process, we give a thorough accounting of gene content, contrasting with both oligotrophic streamlined bacteria and large genome bacteria, and distinguishing between genes derived by vertical and horizontal descent.


Subject(s)
Actinomycetales/growth & development , Actinomycetales/genetics , Adaptation, Biological/genetics , Seawater , Aquatic Organisms/genetics , Aquatic Organisms/growth & development , Bacterial Typing Techniques , DNA, Bacterial/analysis , DNA, Bacterial/genetics , Ecosystem , Estuaries , Genome, Bacterial , Phylogeny , Plankton/genetics , Plankton/growth & development , Sequence Analysis, DNA
8.
Structure ; 26(2): 238-248.e3, 2018 02 06.
Article in English | MEDLINE | ID: mdl-29290487

ABSTRACT

Marine bacteriophage TW1 belongs to the Siphoviridae family and infects Pseudoalteromonas phenolica. Mass spectrometry analysis has identified 16 different proteins in the TW1 virion. Functions of most of these proteins have been predicted by bioinformatic methods. A 3.6 Å resolution cryoelectron microscopy map of the icosahedrally averaged TW1 head showed the atomic structures of the major capsid protein, gp57∗, and the capsid-stabilizing protein, gp56. The gp57∗ structure is similar to that of the phage HK97 capsid protein. The gp56 protein has two domains, each having folds similar to that of the N-terminal part of phage λ gpD, indicating a common ancestry. The first gp56 domain clamps adjacent capsomers together, whereas the second domain is required for trimerization. A 6-fold-averaged reconstruction of the distal part of the tail showed that TW1 has six tail spikes, which are unusual for siphophages but are similar to the podophages P22 and Sf6, suggesting a common evolutionary origin of these spikes.


Subject(s)
Capsid Proteins/metabolism , Capsid/metabolism , Siphoviridae/metabolism , Bacteriophages/metabolism , Mass Spectrometry , Models, Molecular , Protein Conformation , Virus Assembly
9.
Virology ; 489: 116-27, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26748333

ABSTRACT

The virion proteins of Pseudoalteromonas phage φRIO-1 were identified and quantitated by mass spectrometry and gel densitometry. Bioinformatic methods customized to deal with extreme divergence defined a φRIO-1 tail structure homology group of phages, which was further related to T7 tail and internal virion proteins (IVPs). Similarly, homologs of tubular tail components and internal virion proteins were identified in essentially all completely sequenced podoviruses other than those in the subfamily Picovirinae. The podoviruses were subdivided into several tail structure homology groups, in addition to the RIO-1 and T7 groups. Molecular phylogeny indicated that these groups all arose about the same ancient time as the φRIO-1/T7 split. Hence, the T7-like infection mechanism involving the IVPs was an ancestral property of most podoviruses. The IVPs were found to variably host both tail lysozyme domains and domains destined for the cytoplasm, including the N4 virion RNA polymerase embedded within an IVP-D homolog.


Subject(s)
Bacteriophages/genetics , Evolution, Molecular , Podoviridae/genetics , Pseudoalteromonas/virology , Bacteriophages/classification , Bacteriophages/growth & development , Bacteriophages/isolation & purification , Genome, Viral , Molecular Sequence Data , Phylogeny , Podoviridae/classification , Podoviridae/growth & development , Podoviridae/isolation & purification
10.
J Virol ; 87(16): 9189-98, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23760254

ABSTRACT

Bacteria of the genus Pseudoalteromonas are ubiquitous in the world's oceans. Marine bacteria have been posited to be associated with a major ancient branch of podoviruses related to T7. Yet, although Pseudoalteromonas phages belonging to the Corticoviridae and the Siphoviridae and prophages belonging to the Myoviridae have been reported, no Pseudoalteromonas podovirus was previously known. Here, a new lytic Pseudoalteromonas marina phage, ϕRIO-1, belonging to the Podoviridae was isolated and characterized with respect to morphology, genomic sequence, and biological properties. Its major encoded proteins were distantly similar to those of T7. The most similar previously sequenced viruses were Pseudomonas phage PA11 and Salinivibrio phage CW02. Whereas many elements of the morphology and gene organization of ϕRIO-1 are similar to those of podoviruses broadly related to T7, ϕRIO-1 conspicuously lacked an RNA polymerase gene. Since definitions of a T7 supergroup have included similarity in the DNA polymerase gene, a detailed phylogenetic analysis was conducted, and two major DNA polymerase clades in Autographivirinae and several structural variants of the polA family represented in podoviruses were found. ϕRIO-1 carries an operon similar to that in a few other podoviruses predicted to specify activities related to γ-glutamyl amide linkages and/or unusual peptide bonds. Most growth properties of ϕRIO-1 were typical of T7-like phages, except for a long latent period.


Subject(s)
Bacteriophages/isolation & purification , DNA Viruses/genetics , DNA, Viral/chemistry , DNA, Viral/genetics , Genome, Viral , Pseudoalteromonas/virology , Seawater/virology , Bacteriophages/genetics , Bacteriophages/physiology , Bacteriophages/ultrastructure , DNA Viruses/isolation & purification , Gene Order , Microscopy, Electron, Transmission , Molecular Sequence Data , Phylogeny , Podoviridae/genetics , Podoviridae/isolation & purification , Podoviridae/physiology , Podoviridae/ultrastructure , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Viral Proteins/genetics
11.
Appl Microbiol Biotechnol ; 94(6): 1609-17, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22562168

ABSTRACT

Pseudomonas aeruginosa is an important cause of infections, especially in patients with immunodeficiency or diabetes. Antibiotics are effective in preventing morbidity and mortality from Pseudomonas infection, but because of spreading multidrug-resistant bacterial strains, bacteriophages are being explored as an alternative therapy. Two newly purified broad host range Pseudomonas phages, named vB_Pae-Kakheti25 and vB_Pae-TbilisiM32, were characterized as candidates for use in phage therapy. Morphology, host range, growth properties, thermal stability, serology, genomic sequence, and virion composition are reported. When phages are used as bactericides, they are used in mixtures to overcome the development of resistance in the targeted bacterial population. These two phages are representative of diverse siphoviral and podoviral phage families, respectively, and hence have unrelated mechanisms of infection and no cross-antigenicity. Composing bactericidal phage mixtures with members of different phage families may decrease the incidence of developing resistance through a common mechanism.


Subject(s)
Genome, Viral , Pseudomonas Infections/microbiology , Pseudomonas Phages/physiology , Pseudomonas aeruginosa/virology , Genomics , Molecular Sequence Data , Phylogeny , Pseudomonas Phages/classification , Pseudomonas Phages/genetics , Pseudomonas Phages/isolation & purification , Pseudomonas aeruginosa/isolation & purification , Sewage/virology , Viral Proteins/genetics , Viral Proteins/metabolism , Virion/classification , Virion/genetics , Virion/isolation & purification , Virion/physiology
12.
J Virol ; 86(3): 1844-52, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22130535

ABSTRACT

The 283,757-bp double-stranded DNA genome of Pseudomonas fluorescens phage OBP shares a general genomic organization with Pseudomonas aeruginosa phage EL. Comparison of this genomic organization, assembled in syntenic genomic blocks interspersed with hyperplastic regions of the ΦKZ-related phages, supports the proposed division in the "EL-like viruses," and the "phiKZ-like viruses" within a larger subfamily. Identification of putative early transcription promoters scattered throughout the hyperplastic regions explains several features of the ΦKZ-related genome organization (existence of genomic islands) and evolution (multi-inversion in hyperplastic regions). When hidden Markov modeling was used, typical conserved core genes could be identified, including the portal protein, the injection needle, and two polypeptides with respective similarity to the 3'-5' exonuclease domain and the polymerase domain of the T4 DNA polymerase. While the N-terminal domains of the tail fiber module and peptidoglycan-degrading proteins are conserved, the observation of C-terminal catalytic domains typical for the different genera supports the further subdivision of the ΦKZ-related phages.


Subject(s)
Genome, Viral , Pseudomonas Phages/genetics , Markov Chains , Open Reading Frames , Peptidoglycan/metabolism , Promoter Regions, Genetic , Proteolysis
13.
Mol Cell Proteomics ; 9(5): 940-51, 2010 May.
Article in English | MEDLINE | ID: mdl-20233846

ABSTRACT

Pseudomonas chlororaphis phage 201 phi 2-1 produces a large structurally complex virion, including the products of 89 phage genes. Many of these proteins are modified by proteolysis during virion maturation. To delineate the proteolytic maturation process, 46 slices from an SDS-polyacrylamide gel were subjected to tryptic digestion and then HPLC-electrospray ionization-tandem mass spectrometry analysis. The scale of the experiment allowed high sequence coverage and detection of mass spectra assigned to peptides with one end produced by trypsin and the other end derived from a maturation cleavage (semitryptic peptides). Nineteen cleavage sites were detected in this way. From these sites, a cleavage motif was defined and used to predict the remaining cleavages required to explain the gel mobility of the processed polypeptide species. Profiling the gel with spectrum counts for specific polypeptide regions was found to be helpful in deducing the patterns of proteolysis. A total of 29 cleaved polypeptides derived from 19 gene products were thus detected in the mature 201 phi 2-1 virion. When combined with bioinformatics analyses, these results revealed the presence of head protein-encoding gene modules. Most of the propeptides that were removed from the virion after processing were acidic, whereas the mature domain remaining in the virion was nearly charge-neutral. For four of these processed virion proteins, the portions remaining in the mature virion were mutually homologous. Spectrum counts were found to overestimate the relative quantity of minor polypeptide species in the virion. The resulting sensitivity for minor species made it possible to observe a small amount of general proteolysis that also affected the virions.


Subject(s)
Bacteriophages/metabolism , Protein Processing, Post-Translational , Proteome/analysis , Pseudomonas/virology , Viral Proteins/analysis , Virion/metabolism , Amino Acid Motifs , Amino Acid Sequence , Bacteriophages/genetics , Capsid Proteins/chemistry , Capsid Proteins/metabolism , Electrophoresis, Polyacrylamide Gel , Molecular Sequence Data , Molecular Weight , Peptides/chemistry , Peptides/metabolism , Reproducibility of Results , Trypsin/metabolism , Viral Proteins/chemistry , Viral Proteins/metabolism
14.
Methods Mol Biol ; 501: 55-66, 2009.
Article in English | MEDLINE | ID: mdl-19066810

ABSTRACT

Viruses are detected via either biological properties such as plaque formation or physical properties. The physical properties include appearance during microscopy and DNA sequence derived from community sequencing. The assumption is that these procedures will succeed for most, if not all, viruses. However, we have found that some bacteriophages are in a category of viruses that are not detected by any of these classical procedures. Given that the data already indicate viruses to be the "largest reservoir of unknown genetic diversity on earth," the implied expansion of this reservoir confirms the belief that the genome project has hardly begun. The first step is to fill gaps in our knowledge of the biological diversity of viruses, an enterprise that will also help to determine the ways in which (a) viruses have participated in evolution and ecology and (b) viruses can be made to participate in disease control and bioremediation. We present here the details of procedures that can be used to cultivate previously undetectable viruses that are either comparatively large or aggregation-prone.


Subject(s)
Bacteriophages/isolation & purification , Biodiversity , Bacteriophages/genetics , Genetic Variation , Genome, Viral
15.
Virology ; 376(2): 330-8, 2008 Jul 05.
Article in English | MEDLINE | ID: mdl-18474389

ABSTRACT

Pseudomonas chlororaphis phage 201varphi2-1 is a relative of Pseudomonas aeruginosa myovirus phiKZ. Phage 201 phi2-1 was examined by complete genomic sequencing (316,674 bp), by a comprehensive mass spectrometry survey of its virion proteins and by electron microscopy. Seventy-six proteins, of which at least 69 have homologues in phiKZ, were identified by mass spectrometry. Eight proteins, in addition to the major head, tail sheath and tail tube proteins, are abundant in the virion. Electron microscopy of 201 phi2-1 revealed a multitude of long, fine fibers apparently decorating the tail sheath protein. Among the less abundant virion proteins are three homologues to RNA polymerase beta or beta' subunits. Comparison between the genomes of 201 phi2-1 and phiKZ revealed substantial conservation of the genome plan, and a large region with an especially high rate of gene replacement. The phiKZ-like phages exhibited a two-fold higher rate of divergence than for T4-like phages or host genomes.


Subject(s)
Genome, Viral , Pseudomonas Phages/chemistry , Pseudomonas Phages/genetics , Pseudomonas/virology , Viral Proteins/isolation & purification , Virion/chemistry , Virion/genetics , Mass Spectrometry , Microscopy, Electron , Molecular Sequence Data , Pseudomonas Phages/ultrastructure , Viral Proteins/chemistry , Viral Proteins/physiology
16.
Virol J ; 4: 97, 2007 Oct 05.
Article in English | MEDLINE | ID: mdl-17919320

ABSTRACT

BACKGROUND: The recently sequenced 218 kb genome of morphologically atypical Bacillus thuringiensis phage 0305phi8-36 exhibited only limited detectable homology to known bacteriophages. The only known relative of this phage is a string of phage-like genes called BtI1 in the chromosome of B. thuringiensis israelensis. The high degree of divergence and novelty of phage genomes pose challenges in how to describe the phage from its genomic sequences. RESULTS: Phage 0305phi8-36 and BtI1 are estimated to have diverged 2.0 - 2.5 billion years ago. Positionally biased Blast searches aligned 30 homologous structure or morphogenesis genes between 0305phi8-36 and BtI1 that have maintained the same gene order. Functional clustering of the genes helped identify additional gene functions. A conserved long tape measure gene indicates that a long tail is an evolutionarily stable property of this phage lineage. An unusual form of the tail chaperonin system split to two genes was characterized, as was a hyperplastic homologue of the T4gp27 hub gene. Within this region some segments were best described as encoding a conservative array of structure domains fused with a variable component of exchangeable domains. Other segments were best described as multigene units engaged in modular horizontal exchange. The non-structure genes of 0305phi8-36 appear to include the remnants of two replicative systems leading to the hypothesis that the genome plan was created by fusion of two ancestral viruses. The case for a member of the RNAi RNA-directed RNA polymerase family residing in 0305phi8-36 was strengthened by extending the hidden Markov model of this family. Finally, it was noted that prospective transcriptional promoters were distributed in a gradient of small to large transcripts starting from a fixed end of the genome. CONCLUSION: Genomic organization at a level higher than individual gene sequence comparison can be analyzed to aid in understanding large phage genomes. Methods of analysis include 1) applying a time scale, 2) augmenting blast scores with positional information, 3) categorizing genomic rearrangements into one of several processes with characteristic rates and outcomes, and 4) correlating apparent transcript sizes with genomic position, gene content, and promoter motifs.


Subject(s)
Bacillus Phages/genetics , Bacillus thuringiensis/virology , Genome, Viral , Biological Evolution , Genes, Viral , Genomics , Viral Proteins/genetics , Virion/genetics
17.
Virology ; 368(2): 405-21, 2007 Nov 25.
Article in English | MEDLINE | ID: mdl-17673272

ABSTRACT

To investigate the apparent genomic complexity of long-genome bacteriophages, we have sequenced the 218,948-bp genome (6479-bp terminal repeat), and identified the virion proteins (55), of Bacillus thuringiensis bacteriophage 0305phi8-36. Phage 0305phi8-36 is an atypical myovirus with three large curly tail fibers. An accurate mode of DNA pyrosequencing was used to sequence the genome and mass spectrometry was used to accomplish the comprehensive virion protein survey. Advanced informatic techniques were used to identify classical morphogenesis genes. The 0305phi8-36 genes were highly diverged; 19% of 247 closely spaced genes have similarity to proteins with known functions. Genes for virion-associated, apparently fibrous proteins in a new class were found, in addition to strong candidates for the curly fiber genes. Phage 0305phi8-36 has twice the virion protein coding sequence of T4. Based on its genomic isolation, 0305phi8-36 is a resource for future studies of vertical gene transmission.


Subject(s)
Bacillus Phages/classification , Bacillus Phages/genetics , Bacillus thuringiensis/virology , Mass Spectrometry , Sequence Analysis, DNA , Viral Proteins , Amino Acid Sequence , Bacillus Phages/growth & development , Bacillus Phages/metabolism , Computational Biology , Genome, Viral , Molecular Sequence Data , Sequence Analysis, DNA/methods , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/metabolism
18.
Electrophoresis ; 28(12): 1896-902, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17480041

ABSTRACT

dsDNA viruses with long genomes (>200 kb) are expected to be a major source of novel genes. To rapidly characterize the genomes of newly isolated dsDNA bacteriophages, we develop here a procedure for the PFGE of intact long DNA genomes from bacteriophage particles in unfractionated, infected cell lysates of either liquid or gelled cultures. The DNA used for PFGE is suitable for sequencing after extraction with phenol. The PFGE is tuned to the range of expected DNA lengths. This procedure bypasses the isolation of bacteriophage particles and is useful for PFGE analysis of DNA from dissected zones of bacteriophage plaques.


Subject(s)
Bacteriophages/genetics , DNA, Viral/isolation & purification , Genome, Viral , Prokaryotic Cells/virology , Bacteriophages/ultrastructure , DNA Restriction Enzymes , DNA, Viral/genetics , Electrophoresis, Gel, Pulsed-Field/methods , Environmental Microbiology , Evolution, Molecular , Microscopy, Fluorescence , Molecular Weight
19.
Virol J ; 4: 21, 2007 Feb 26.
Article in English | MEDLINE | ID: mdl-17324288

ABSTRACT

The number of successful propagations/isolations of soil-borne bacteriophages is small in comparison to the number of bacteriophages observed by microscopy (great plaque count anomaly). As one resolution of the great plaque count anomaly, we use propagation in ultra-dilute agarose gels to isolate a Bacillus thuringiensis bacteriophage with a large head (95 nm in diameter), tail (486 x 26 nm), corkscrew-like tail fibers (187 x 10 nm) and genome (221 Kb) that cannot be detected by the usual procedures of microbiology. This new bacteriophage, called 0305phi8-36 (first number is month/year of isolation; remaining two numbers identify the host and bacteriophage), has a high dependence of plaque size on the concentration of a supporting agarose gel. Bacteriophage 0305phi8-36 does not propagate in the traditional gels used for bacteriophage plaque formation and also does not produce visible lysis of liquid cultures. Bacteriophage 0305phi8-36 aggregates and, during de novo isolation from the environment, is likely to be invisible to procedures of physical detection that use either filtration or centrifugal pelleting to remove bacteria. Bacteriophage 0305phi8-36 is in a new genomic class, based on genes for both structural components and DNA packaging ATPase. Thus, knowledge of environmental virus diversity is expanded with prospect of greater future expansion.


Subject(s)
Bacillus Phages/growth & development , Bacillus Phages/isolation & purification , Bacillus thuringiensis/virology , Soil Microbiology , Virus Cultivation , Bacillus Phages/classification , Bacillus Phages/ultrastructure , Bacillus thuringiensis/ultrastructure , Bacteriolysis , Culture Media/chemistry , Genome, Viral , Sepharose , Viral Plaque Assay
20.
Electrophoresis ; 26(23): 4440-8, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16273583

ABSTRACT

A previous study shows that electrophoretic preconditioning of a commercial polymer solution increases the spacing and resolution of DNA fragments fractionated in this solution by CE at 50 degrees C (Griess, G. A. et al., Electrophoresis 2005, 26, 102). The present study shows that this preconditioning effect on peak spacing progressively increases when the temperature of preconditioning increases to 70 degrees C, though fractionation is still performed at 50 degrees C. An increase in peak sharpness accompanies the increase in peak separation for DNA fragments longer than 200 bases. Changing the preconditioning temperature from 50 to 70 degrees C optimally improves resolution of fragment analysis in the range of 600-2000 nucleotides. When DNA sequencing is performed with automated base calling and 70 degrees C preconditioning at 319 V/cm (47 cm long capillary, Applied Biosystems 310 apparatus), the range of high-quality base calls is increased by 25% to 750; the range of low-quality base calls is increased by about 100% to 1200 in comparison to DNA sequencing without preconditioning.


Subject(s)
DNA/chemistry , Sequence Analysis, DNA/methods , Electrophoresis, Capillary , Plasmids/chemistry , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...