Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Adv Mater ; 29(3)2017 Jan.
Article in English | MEDLINE | ID: mdl-27862364

ABSTRACT

Using two-photon tomography, carrier lifetimes are mapped in polycrystalline CdTe photovoltaic devices. These 3D maps probe subsurface carrier dynamics that are inaccessible with traditional optical techniques. They reveal that CdCl2 treatment of CdTe solar cells suppresses nonradiative recombination and enhances carrier lifetimes throughout the film with substantial improvements particularly near subsurface grain boundaries and the critical buried p-n junction.

2.
Phys Chem Chem Phys ; 15(27): 11306-12, 2013 Jul 21.
Article in English | MEDLINE | ID: mdl-23733016

ABSTRACT

High solubility is a requirement for energy relay dyes (ERDs) to absorb a large portion of incident light and significantly improve the efficiency of dye-sensitized solar cells (DSSCs). Two benzonitrile-soluble ERDs, BL302 and BL315, were synthesized, characterized, and resulted in a 65% increase in the efficiency of TT1-sensitized DSSCs. The high solubility (180 mM) of these ERDs allows for absorption of over 95% of incident light at their peak wavelength. The overall power conversion efficiency of DSSCs with BL302 and BL315 was found to be limited by their energy transfer efficiency of approximately 70%. Losses due to large pore size, dynamic collisional quenching of the ERD, energy transfer to desorbed sensitizing dyes and static quenching by complex formation were investigated and it was found that a majority of the losses are caused by the formation of statically quenched ERDs in solution.


Subject(s)
Coloring Agents/chemistry , Nitriles/chemistry , Solar Energy , Coloring Agents/chemical synthesis , Molecular Structure , Nitriles/chemical synthesis , Solubility
3.
Sci Rep ; 3: 2098, 2013.
Article in English | MEDLINE | ID: mdl-23807197

ABSTRACT

Accurately measuring the bulk minority carrier lifetime is one of the greatest challenges in evaluating photoactive materials used in photovoltaic cells. One-photon time-resolved photoluminescence decay measurements are commonly used to measure lifetimes of direct bandgap materials. However, because the incident photons have energies higher than the bandgap of the semiconductor, most carriers are generated close to the surface, where surface defects cause inaccurate lifetime measurements. Here we show that two-photon absorption permits sub-surface optical excitation, which allows us to decouple surface and bulk recombination processes even in unpassivated samples. Thus with two-photon microscopy we probe the bulk minority carrier lifetime of photovoltaic semiconductors. We demonstrate how the traditional one-photon technique can underestimate the bulk lifetime in a CdTe crystal by 10× and show that two-photon excitation more accurately measures the bulk lifetime. Finally, we generate multi-dimensional spatial maps of optoelectronic properties in the bulk of these materials using two-photon excitation.

4.
Org Lett ; 15(4): 784-7, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-23384416

ABSTRACT

Introduction of a naphthalocyanine moiety to phthalocyanine allows for a gradual red shift of the absorption spectrum in the resulting chromophore. Using silicon as a core atom allows for the introduction of additional siloxane side chains which mitigate dye aggregation. A dye-sensitized solar cell with this hybrid sensitizer exhibits a broad and flat IPCE of 80% between 600 and 750 nm and high photocurrent densities of 19.0 mA/cm(2).

5.
Phys Chem Chem Phys ; 14(35): 12130-40, 2012 Sep 21.
Article in English | MEDLINE | ID: mdl-22850593

ABSTRACT

Atomic layer deposition (ALD) was used to fabricate Al(2)O(3) recombination barriers in solid-state dye-sensitized solar cells (ss-DSSCs) employing an organic hole transport material (HTM) for the first time. Al(2)O(3) recombination barriers of varying thickness were incorporated into efficient ss-DSSCs utilizing the Z907 dye adsorbed onto a 2 µm-thick nanoporous TiO(2) active layer and the HTM spiro-OMeTAD. The impact of Al(2)O(3) barriers was also studied in devices employing different dyes, with increased active layer thicknesses, and with substrates that did not undergo the TiCl(4) surface treatment. In all instances, electron lifetimes (as determined by transient photovoltage measurements) increased and dark current was suppressed after Al(2)O(3) deposition. However, only when the TiCl(4) treatment was eliminated did device efficiency increase; in all other instances efficiency decreased due to a drop in short-circuit current. These results are attributed in the former case to the similar effects of Al(2)O(3) ALD and the TiCl(4) surface treatment whereas the insulating properties of Al(2)O(3) hinder charge injection and lead to current loss in TiCl(4)-treated devices. The impact of Al(2)O(3) barrier layers was unaffected by doubling the active layer thickness or using an alternative ruthenium dye, but a metal-free donor-π-acceptor dye exhibited a much smaller decrease in current due to its higher excited state energy. We develop a model employing prior research on Al(2)O(3) growth and dye kinetics that successfully predicts the reduction in device current as a function of ALD cycles and is extendable to different dye-barrier systems.

6.
J Am Chem Soc ; 133(27): 10662-7, 2011 Jul 13.
Article in English | MEDLINE | ID: mdl-21619039

ABSTRACT

Cosensitization of broadly absorbing ruthenium metal complex dyes with highly absorptive near-infrared (NIR) organic dyes is a clear pathway to increase near-infrared light harvesting in liquid-based dye-sensitized solar cells (DSCs). In cosensitized DSCs, dyes are intimately mixed, and intermolecular charge and energy transfer processes play an important role in device performance. Here, we demonstrate that an organic NIR dye incapable of hole regeneration is able to produce photocurrent via intermolecular energy transfer with an average excitation transfer efficiency of over 25% when cosensitized with a metal complex sensitizing dye (SD). We also show that intermolecular hole transfer from the SD to NIR dye is a competitive process with dye regeneration, reducing the internal quantum efficiency and the electron lifetime of the DSC. This work demonstrates the general feasibility of using energy transfer to boost light harvesting from 700 to 800 nm and also highlights a key challenge for developing highly efficient cosensitized dye-sensitized solar cells.

7.
Chemphyschem ; 12(3): 657-61, 2011 Feb 25.
Article in English | MEDLINE | ID: mdl-21344598

ABSTRACT

Panchromatic response is essential to increase the light-harvesting efficiency in solar conversion systems. Herein we show increased light harvesting from using multiple energy relay dyes inside dye-sensitized solar cells. Additional photoresponse from 400-590 nm matching the optical window of the zinc phthalocyanine sensitizer was observed due to Förster resonance energy transfer (FRET) from the two energy relay dyes to the sensitizing dye. The complementary absorption spectra of the energy relay dyes and high excitation transfer efficiencies result in a 35% increase in photovoltaic performance.

8.
Nat Mater ; 9(9): 762-7, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20676086

ABSTRACT

Solar-energy conversion usually takes one of two forms: the 'quantum' approach, which uses the large per-photon energy of solar radiation to excite electrons, as in photovoltaic cells, or the 'thermal' approach, which uses concentrated sunlight as a thermal-energy source to indirectly produce electricity using a heat engine. Here we present a new concept for solar electricity generation, photon-enhanced thermionic emission, which combines quantum and thermal mechanisms into a single physical process. The device is based on thermionic emission of photoexcited electrons from a semiconductor cathode at high temperature. Temperature-dependent photoemission-yield measurements from GaN show strong evidence for photon-enhanced thermionic emission, and calculated efficiencies for idealized devices can exceed the theoretical limits of single-junction photovoltaic cells. The proposed solar converter would operate at temperatures exceeding 200 degrees C, enabling its waste heat to be used to power a secondary thermal engine, boosting theoretical combined conversion efficiencies above 50%.

9.
Nano Lett ; 10(8): 3077-83, 2010 Aug 11.
Article in English | MEDLINE | ID: mdl-20617816

ABSTRACT

The energy relay dye, 4-(Dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM), was used with a near-infrared sensitizing dye, TT1, to increase the overall power conversion efficiency of a dye-sensitized solar cell (DSC) from 3.5% to 4.5%. The unattached DCM dyes exhibit an average excitation transfer efficiency (ETE) of 96% inside TT1-covered, mesostructured TiO(2) films. Further performance increases were limited by the solubility of DCM in an acetonitrile based electrolyte. This demonstration shows that energy relay dyes can be efficiently implemented in optimized dye-sensitized solar cells, but also highlights the need to design highly soluble energy relay dyes with high molar extinction coefficients.

10.
Opt Express ; 18(4): 3893-904, 2010 Feb 15.
Article in English | MEDLINE | ID: mdl-20389400

ABSTRACT

Förster resonant energy transfer can improve the spectral breadth, absorption and energy conversion efficiency of dye sensitized solar cells. In this design, unattached relay dyes absorb the high energy photons and transfer the excitation to sensitizing dye molecules by Förster resonant energy transfer. We use an analytic theory to calculate the excitation transfer efficiency from the relay dye to the sensitizing dye accounting for dynamic quenching and relay dye diffusion. We present calculations for pores of cylindrical and spherical geometry and examine the effects of the Förster radius, the pore size, sensitizing dye surface concentration, collisional quenching rate, and relay dye lifetime. We find that the excitation transfer efficiency can easily exceed 90% for appropriately chosen dyes and propose two different strategies for selecting dyes to achieve record power conversion efficiencies.


Subject(s)
Electric Power Supplies , Fluorescence Resonance Energy Transfer/instrumentation , Fluorescent Dyes , Models, Theoretical , Solar Energy , Computer Simulation , Computer-Aided Design , Energy Transfer , Equipment Design , Equipment Failure Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...