Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Prosthodont ; 24(3): 188-93, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25850949

ABSTRACT

PURPOSE: Recently, a novel technique was introduced to combine lithium disilicate and zirconia into one restoration. The purpose of this study was to compare the microtensile bond strength of veneering ceramic to a zirconia core in two techniques: the e.max® CAD-on technique and the Press-on technique. MATERIALS AND METHODS: Group A was prepared by veneering sintered zirconia blocks (e.max® ZirCAD) with lithium disilicate blocks (e.max® CAD) using the CAD-on technique according to manufacturer's instructions. Group B was prepared by taking sintered e.max® ZirCAD blocks and veneering them with fluorapatite glass-ceramic (e.max® ZirPress) using the Press-on technique according to manufacturer's instructions. Each block was loaded in a dynamic cyclic loading machine. The blocks were then sectioned into 1 × 1 mm(2) beams (n = 43) using a precision saw, thermocycled, and loaded in tension until failure on a universal testing machine. A mean and standard deviation were determined per group. Data were analyzed using an unpaired t-test (α = 0.05). RESULTS: The mean microtensile bond strengths were 44.0 ± 13.8 MPa for the CAD-on technique and 14.9 ± 8.8 MPa for the Press-on technique. Significant differences were found between the two groups (p = 2.7E-19). CONCLUSIONS: The CAD-on technique (lithium disilicate/zirconia) resulted in greater microtensile bond strength than the Press-on technique (fluorapatite glass-ceramic/zirconia).


Subject(s)
Dental Porcelain/chemistry , Dental Prosthesis Design/methods , Dental Stress Analysis , Dental Veneers , Prosthodontics/methods , Zirconium/chemistry , Apatites , Ceramics/chemistry , Materials Testing/methods , Tensile Strength
2.
J Prosthodont ; 21(5): 346-52, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22443122

ABSTRACT

PURPOSE: The success of zirconia-reinforced all-ceramic crowns depends on the formation of a stable bond between the zirconia core and the veneering porcelain. The purpose of this study was to test the effects of liner application and airborne particle abrasion of a postsintered Y-TZP core on the bond strength between the zirconia core and veneering porcelain with or without cyclic loading. MATERIALS AND METHODS: Kavo Everest® Y-TZP blank disks were sintered and divided into three treatment groups: airborne particle abrasion, IPS e.max® Ceram Zirliner application, or no surface treatment. The disks were then veneered with IPS e.max® ZirPress veneering porcelain. Half the veneered disks from each group were cyclically loaded. This created six experimental groups: three surface treatment groups cyclically loaded and three not loaded. The disks were then sectioned into microbars for microtensile bond strength (MTBS) testing (40 specimens per group). Specimens were luted to a fixture mount and loaded to failure using a universal testing machine (MTS Insight). The maximum force was measured and bond strength computed. Data were analyzed with a two-way ANOVA and Tukey's HSD test (α= 0.05). RESULTS: Airborne particle abrasion significantly decreased MTBS values (p= 0.043), and ZirLiner application did not have a significant effect on MTBS values compared to control. Cyclic loading did not have a significant effect on MTBS values. The predominant failure mode in all groups was mixed. CONCLUSIONS: Airborne particle abrasion of the interfacial surface of the Everest® Y-TZP core significantly decreased the MTBS to ZirPress veneering porcelain when compared to no interfacial surface treatment. Application of ZirLiner to the interfacial surface of the Everest® Y-TZP core did not significantly increase or decrease the MTBS to ZirPress veneering porcelain, compared to the other surface treatments. Cyclic loading did not affect bond strengths in any of the groups, regardless of surface treatment. Neither cyclic loading nor surface treatment affected the failure mode of the specimens.


Subject(s)
Dental Bonding , Dental Materials/chemistry , Dental Porcelain/chemistry , Dental Veneers , Yttrium/chemistry , Zirconium/chemistry , Aluminum Oxide/chemistry , Apatites/chemistry , Butylene Glycols/chemistry , Ceramics/chemistry , Dental Etching/methods , Dental Stress Analysis/instrumentation , Humans , Materials Testing , Stress, Mechanical , Surface Properties , Temperature , Tensile Strength , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...