Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biosens Bioelectron ; 198: 113774, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34823962

ABSTRACT

Biointegrative information processing systems offer a great advantage to autonomous biodevices, as their capacity for biological computation provides the ability to sense the state of more complex environments and better integrate with downstream biological regulation systems. Deoxyribozymes (DNAzymes) and aptamers are of interest to such computational biosensing systems due to the enzymatic properties of DNAzymes and the ligand-inducible conformational structures of aptamers. Herein, we describe a novel method for providing ligand-responsive allosteric control to a DNAzyme using an RNA aptamer. We designed a NOT-logic-compliant E6 DNAzyme to be complementary to an RNA aptamer targeting theophylline, such that the aptamer competitively interacted with either theophylline or the DNAzyme, and disabled the DNAzyme only when theophylline concentration was below a given threshold. Out of our seven designed "complexing aptazymes," three demonstrated effective theophylline-responsive allosteric regulation (2.84 ± 3.75%, 4.97 ± 2.92%, and 8.91 ± 4.19% activity in the absence of theophylline; 46.29 ± 3.36%, 50.70 ± 10.15%, and 61.26 ± 6.18% activity in the presence of theophylline). Moreover, the same three complexing aptazymes also demonstrated the ability to semi-quantitatively determine the concentration of theophylline present in solution, successfully discriminating between therapeutically ineffective (<20 µM), safe (20-100 µM), and toxic (>100 µM) theophylline concentrations. Our method of using an RNA aptamer for ligand-responsive allosteric control of a DNAzyme expands the way aptamers can be configured for biosensing, and suggests a pathway for embedding DNAzymes to provide enhanced information processing and control of biological systems.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , DNA, Catalytic , Ligands , Theophylline
2.
Nano Lett ; 19(11): 7655-7661, 2019 11 13.
Article in English | MEDLINE | ID: mdl-31615207

ABSTRACT

Deoxyribozymes (DNAzymes) have demonstrated a significant capacity for biocomputing and hold promise for information processing within advanced biological devices if several key capabilities are developed. One required capability is reuse-having DNAzyme logic gates be cyclically, and controllably, activated and deactivated. We designed an oligonucleotide-based system for DNAzyme reuse that could (1) remove previously bound inputs by addition of complementary oligonucleotides via toe-hold mediated binding and (2) diminish output signal through the addition of quencher-labeled oligonucleotides complementary to the fluorophore-bound substrate. Our system demonstrated, for the first time, the ability for DNAzymes to have their activity toggled, with activity returning to 90-125% of original activity. This toggling could be performed multiple times with control being exerted over when the toggling occurs, with three clear cycles observed before the variability in activity became too great. Our data also demonstrated that fluorescent output of the DNAzyme activity could be actively removed and regenerated. This reuse system can increase the efficiency of DNAzyme-based logic circuits by reducing the number of redundant oligonucleotides and is critical for future development of reusable biodevices controlled by logical operations.


Subject(s)
Computers, Molecular , DNA, Catalytic/chemistry , Base Sequence , Fluorescence , Fluorescent Dyes/chemistry , Nanotechnology/instrumentation
3.
PLoS One ; 11(10): e0162355, 2016.
Article in English | MEDLINE | ID: mdl-27706146

ABSTRACT

Increased understanding of the molecular components involved in reproduction may assist in understanding the evolutionary adaptations used by animals, including hermaphrodites, to produce offspring and retain a continuation of their lineage. In this study, we focus on the Mediterranean snail, Theba pisana, a hermaphroditic land snail that has become a highly invasive pest species within agricultural areas throughout the world. Our analysis of T. pisana CNS tissue has revealed gene transcripts encoding molluscan reproduction-associated proteins including APGWamide, gonadotropin-releasing hormone (GnRH) and an egg-laying hormone (ELH). ELH isoform 1 (ELH1) is known to be a potent reproductive peptide hormone involved in ovulation and egg-laying in some aquatic molluscs. Two other non-CNS ELH isoforms were also present in T. pisana (Tpi-ELH2 and Tpi-ELH3) within the snail dart sac and mucous glands. Bioactivity of a synthetic ELH1 on sexually mature T. pisana was confirmed through bioassay, with snails showing ELH1-induced egg-laying behaviours, including soil burrowing and oviposition. In summary, this study presents a detailed molecular analysis of reproductive neuropeptide genes in a land snail and provides a foundation for understanding ELH function.


Subject(s)
Oviposition/genetics , Peptides/metabolism , Snails/metabolism , Amino Acid Sequence , Animals , Central Nervous System/metabolism , Chromatography, High Pressure Liquid , Gonadotropin-Releasing Hormone/analysis , Gonadotropin-Releasing Hormone/genetics , Gonadotropin-Releasing Hormone/metabolism , In Situ Hybridization , Invertebrate Hormones/analysis , Invertebrate Hormones/genetics , Invertebrate Hormones/metabolism , Molecular Sequence Data , Peptides/analysis , Peptides/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA/chemistry , RNA/isolation & purification , RNA/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Sequence Alignment , Sequence Analysis, RNA , Snails/genetics , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...