Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-32714882

ABSTRACT

One complication of malaria is increased susceptibility to invasive bacterial infections. Plasmodium infections impair host immunity to non-Typhoid Salmonella (NTS) through heme-oxygenase I (HO-I)-induced release of immature granulocytes and myeloid cell-derived IL-10. Yet, it is not known if these mechanisms are specific to NTS. We show here, that Plasmodium yoelii 17XNL (Py) infected mice had impaired clearance of systemic Listeria monocytogenes (Lm) during both acute parasitemia and up to 2 months after clearance of Py infected red blood cells that was independent of HO-I and IL-10. Py-infected mice were also susceptible to Streptococcus pneumoniae (Sp) bacteremia, a common malaria-bacteria co-infection, with higher blood and spleen bacterial burdens and decreased survival compared to naïve mice. Mechanistically, impaired immunity to Sp was independent of HO-I, but was dependent on Py-induced IL-10. Splenic phagocytes from Py infected mice exhibit an impaired ability to restrict growth of intracellular Lm, and neutrophils from Py-infected mice produce less reactive oxygen species (ROS) in response to Lm or Sp. Analysis also identified a defect in a serum component in Py-infected mice that contributes to reduced production of ROS in response to Sp. Finally, treating naïve mice with Plasmodium-derived hemozoin containing naturally bound bioactive molecules, excluding DNA, impaired clearance of Lm. Collectively, we have demonstrated that Plasmodium infection impairs host immunity to diverse bacteria, including S. pneumoniae, through multiple effects on innate immunity, and that a parasite-specific factor (Hz+bound bioactive molecules) directly contributes to Plasmodium-induced suppression of antibacterial innate immunity.


Subject(s)
Hemeproteins , Immunity, Innate , Plasmodium yoelii , Salmonella Infections, Animal/immunology , Animals , Mice , Mice, Inbred C57BL
2.
PLoS Pathog ; 15(3): e1007511, 2019 03.
Article in English | MEDLINE | ID: mdl-30893371

ABSTRACT

While much is known about acute infection pathogenesis, the understanding of chronic infections has lagged. Here we sought to identify the genes and functions that mediate fitness of the pathogen Pseudomonas aeruginosa in chronic wound infections, and to better understand the selective environment in wounds. We found that clinical isolates from chronic human wounds were frequently defective in virulence functions and biofilm formation, and that many virulence and biofilm formation genes were not required for bacterial fitness in experimental mouse wounds. In contrast, genes involved in anaerobic growth, some metabolic and energy pathways, and membrane integrity were critical. Consistent with these findings, the fitness characteristics of some wound impaired-mutants could be represented by anaerobic, oxidative, and membrane-stress conditions ex vivo, and more comprehensively by high-density bacterial growth conditions, in the absence of a host. These data shed light on the bacterial functions needed in chronic wound infections, the nature of stresses applied to bacteria at chronic infection sites, and suggest therapeutic targets that might compromise wound infection pathogenesis.


Subject(s)
Cell Proliferation/physiology , Pseudomonas aeruginosa/growth & development , Wound Healing/physiology , Adult , Animals , Bacteria/growth & development , Bacterial Infections/metabolism , Biofilms/growth & development , Disease Models, Animal , Female , Genetic Fitness , Host Microbial Interactions/physiology , Humans , Male , Mice , Pseudomonas Infections , Pseudomonas aeruginosa/metabolism , Pseudomonas aeruginosa/pathogenicity , Virulence/physiology , Wound Infection/metabolism , Wound Infection/microbiology
3.
Proc Natl Acad Sci U S A ; 113(8): 2235-40, 2016 Feb 23.
Article in English | MEDLINE | ID: mdl-26858424

ABSTRACT

Plasmodium infections result in clinical presentations that range from asymptomatic to severe malaria, resulting in ∼1 million deaths annually. Despite this toll on humanity, the factors that determine disease severity remain poorly understood. Here, we show that the gut microbiota of mice influences the pathogenesis of malaria. Genetically similar mice from different commercial vendors, which exhibited differences in their gut bacterial community, had significant differences in parasite burden and mortality after infection with multiple Plasmodium species. Germfree mice that received cecal content transplants from "resistant" or "susceptible" mice had low and high parasite burdens, respectively, demonstrating the gut microbiota shaped the severity of malaria. Among differences in the gut flora were increased abundances of Lactobacillus and Bifidobacterium in resistant mice. Susceptible mice treated with antibiotics followed by yogurt made from these bacterial genera displayed a decreased parasite burden. Consistent with differences in parasite burden, resistant mice exhibited an elevated humoral immune response compared with susceptible mice. Collectively, these results identify the composition of the gut microbiota as a previously unidentified risk factor for severe malaria and modulation of the gut microbiota (e.g., probiotics) as a potential treatment to decrease parasite burden.


Subject(s)
Gastrointestinal Microbiome , Malaria/microbiology , Animals , Anti-Bacterial Agents/therapeutic use , Bifidobacterium/isolation & purification , Bifidobacterium/physiology , Gastrointestinal Microbiome/immunology , Gastrointestinal Microbiome/physiology , Germ-Free Life , Host-Parasite Interactions/immunology , Humans , Lactobacillus/isolation & purification , Lactobacillus/physiology , Malaria/parasitology , Malaria/therapy , Mice , Mice, Inbred C57BL , Parasite Load , Plasmodium yoelii , Probiotics/therapeutic use
4.
Cell Host Microbe ; 18(3): 307-19, 2015 Sep 09.
Article in English | MEDLINE | ID: mdl-26299432

ABSTRACT

Bacterial lineages that chronically infect cystic fibrosis (CF) patients genetically diversify during infection. However, the mechanisms driving diversification are unknown. By dissecting ten CF lung pairs and studying ∼12,000 regional isolates, we were able to investigate whether clonally related Pseudomonas aeruginosa inhabiting different lung regions evolve independently and differ functionally. Phylogenetic analysis of genome sequences showed that regional isolation of P. aeruginosa drives divergent evolution. We investigated the consequences of regional evolution by studying isolates from mildly and severely diseased lung regions and found evolved differences in bacterial nutritional requirements, host defense and antibiotic resistance, and virulence due to hyperactivity of the type 3 secretion system. These findings suggest that bacterial intermixing is limited in CF lungs and that regional selective pressures may markedly differ. The findings also may explain how specialized bacterial variants arise during infection and raise the possibility that pathogen diversification occurs in other chronic infections characterized by spatially heterogeneous conditions.


Subject(s)
Cystic Fibrosis/complications , Genetic Variation , Lung/microbiology , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/classification , Pseudomonas aeruginosa/genetics , Humans , Molecular Sequence Data , Pseudomonas aeruginosa/isolation & purification , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...