Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Malar J ; 22(1): 138, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37101269

ABSTRACT

BACKGROUND: As both mechanistic and geospatial malaria modeling methods become more integrated into malaria policy decisions, there is increasing demand for strategies that combine these two methods. This paper introduces a novel archetypes-based methodology for generating high-resolution intervention impact maps based on mechanistic model simulations. An example configuration of the framework is described and explored. METHODS: First, dimensionality reduction and clustering techniques were applied to rasterized geospatial environmental and mosquito covariates to find archetypal malaria transmission patterns. Next, mechanistic models were run on a representative site from each archetype to assess intervention impact. Finally, these mechanistic results were reprojected onto each pixel to generate full maps of intervention impact. The example configuration used ERA5 and Malaria Atlas Project covariates, singular value decomposition, k-means clustering, and the Institute for Disease Modeling's EMOD model to explore a range of three-year malaria interventions primarily focused on vector control and case management. RESULTS: Rainfall, temperature, and mosquito abundance layers were clustered into ten transmission archetypes with distinct properties. Example intervention impact curves and maps highlighted archetype-specific variation in efficacy of vector control interventions. A sensitivity analysis showed that the procedure for selecting representative sites to simulate worked well in all but one archetype. CONCLUSION: This paper introduces a novel methodology which combines the richness of spatiotemporal mapping with the rigor of mechanistic modeling to create a multi-purpose infrastructure for answering a broad range of important questions in the malaria policy space. It is flexible and adaptable to a range of input covariates, mechanistic models, and mapping strategies and can be adapted to the modelers' setting of choice.


Subject(s)
Malaria , Animals , Humans , Malaria/prevention & control , Mosquito Control/methods
2.
Sci Data ; 5: 180073, 2018 04 24.
Article in English | MEDLINE | ID: mdl-29688216

ABSTRACT

Despite a long history of mosquito-borne virus epidemics in the Americas, the impact of the Zika virus (ZIKV) epidemic of 2015-2016 was unexpected. The need for scientifically informed decision-making is driving research to understand the emergence and spread of ZIKV. To support that research, we assembled a data set of key covariates for modeling ZIKV transmission dynamics in Colombia, where ZIKV transmission was widespread and the government made incidence data publically available. On a weekly basis between January 1, 2014 and October 1, 2016 at three administrative levels, we collated spatiotemporal Zika incidence data, nine environmental variables, and demographic data into a single downloadable database. These new datasets and those we identified, processed, and assembled at comparable spatial and temporal resolutions will save future researchers considerable time and effort in performing these data processing steps, enabling them to focus instead on extracting epidemiological insights from this important data set. Similar approaches could prove useful for filling data gaps to enable epidemiological analyses of future disease emergence events.


Subject(s)
Epidemics , Zika Virus Infection/epidemiology , Zika Virus , Colombia/epidemiology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...