Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 104
Filter
1.
Proc Natl Acad Sci U S A ; 121(14): e2320013121, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38547060

ABSTRACT

Dephosphorylation of pSer51 of the α subunit of translation initiation factor 2 (eIF2αP) terminates signaling in the integrated stress response (ISR). A trimeric mammalian holophosphatase comprised of a protein phosphatase 1 (PP1) catalytic subunit, the conserved C-terminally located ~70 amino acid core of a substrate-specific regulatory subunit (PPP1R15A/GADD34 or PPP1R15B/CReP) and G-actin (an essential cofactor) efficiently dephosphorylate eIF2αP in vitro. Unlike their viral or invertebrate counterparts, with whom they share the conserved 70 residue core, the mammalian PPP1R15s are large proteins of more than 600 residues. Genetic and cellular observations point to a functional role for regions outside the conserved core of mammalian PPP1R15A in dephosphorylating its natural substrate, the eIF2 trimer. We have combined deep learning technology, all-atom molecular dynamics simulations, X-ray crystallography, and biochemistry to uncover binding of the γ subunit of eIF2 to a short helical peptide repeated four times in the functionally important N terminus of human PPP1R15A that extends past its conserved core. Binding entails insertion of Phe and Trp residues that project from one face of an α-helix formed by the conserved repeats of PPP1R15A into a hydrophobic groove exposed on the surface of eIF2γ in the eIF2 trimer. Replacing these conserved Phe and Trp residues with Ala compromises PPP1R15A function in cells and in vitro. These findings suggest mechanisms by which contacts between a distant subunit of eIF2 and elements of PPP1R15A distant to the holophosphatase active site contribute to dephosphorylation of eIF2αP by the core PPP1R15 holophosphatase and to efficient termination of the ISR in mammals.


Subject(s)
Eukaryotic Initiation Factor-2 , Protein Processing, Post-Translational , Animals , Humans , Actins/metabolism , Eukaryotic Initiation Factor-2/genetics , Eukaryotic Initiation Factor-2/metabolism , Phosphorylation , Protein Phosphatase 1/metabolism
2.
EMBO J ; 43(5): 719-753, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38177498

ABSTRACT

Effector mechanisms of the unfolded protein response (UPR) in the endoplasmic reticulum (ER) are well-characterised, but how ER proteostasis is sensed is less well understood. Here, we exploited the beta isoform of the UPR transducer IRE1, that is specific to mucin-producing cells in order to gauge the relative regulatory roles of activating ligands and repressing chaperones of the specialised ER of goblet cells. Replacement of the stress-sensing luminal domain of endogenous IRE1α in CHO cells (normally expressing neither mucin nor IRE1ß) with the luminal domain of IRE1ß deregulated basal IRE1 activity. The mucin-specific chaperone AGR2 repressed IRE1 activity in cells expressing the domain-swapped IRE1ß/α chimera, but had no effect on IRE1α. Introduction of the goblet cell-specific client MUC2 reversed AGR2-mediated repression of the IRE1ß/α chimera. In vitro, AGR2 actively de-stabilised the IRE1ß luminal domain dimer and formed a reversible complex with the inactive monomer. These features of the IRE1ß-AGR2 couple suggest that active repression of IRE1ß by a specialised mucin chaperone subordinates IRE1 activity to a proteostatic challenge unique to goblet cells, a challenge that is otherwise poorly recognised by the pervasive UPR transducers.


Subject(s)
Endoribonucleases , Goblet Cells , Mucins , Animals , Cricetinae , Humans , Cricetulus , Goblet Cells/metabolism , Molecular Chaperones/genetics , Mucins/genetics , Mucoproteins/genetics , Oncogene Proteins , Protein Serine-Threonine Kinases/genetics , CHO Cells
3.
J Virol ; 97(2): e0003923, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36749077

ABSTRACT

Many viruses sequester the materials needed for their replication into discrete subcellular factories. For rotaviruses (RVs), these factories are called viroplasms, and they are formed in the host cell cytosol via the process of liquid-liquid phase separation (LLPS). The nonstructural protein 2 (NSP2) and its binding partner, nonstructural protein 5 (NSP5), are critical for viroplasm biogenesis. Yet it is not fully understood how NSP2 and NSP5 cooperate to form factories. The C-terminal region (CTR) of NSP2 (residues 291 to 317) is flexible, allowing it to participate in domain-swapping interactions that promote interoctamer interactions and, presumably, viroplasm formation. Molecular dynamics simulations showed that a lysine-to-glutamic acid change at position 294 (K294E) reduces NSP2 CTR flexibility in silico. To test the impact of reduced NSP2 CTR flexibility during infection, we engineered a mutant RV bearing this change (rRV-NSP2K294E). Single-cycle growth assays revealed a >1.2-log reduction in endpoint titers for rRV-NSP2K294E versus the wild-type control (rRV-WT). Using immunofluorescence assays, we found that rRV-NSP2K294E formed smaller, more numerous viroplasms than rRV-WT. Live-cell imaging experiments confirmed these results and revealed that rRV-NSP2K294E factories had delayed fusion kinetics. Moreover, NSP2K294E and several other CTR mutants formed fewer viroplasm-like structures in NSP5 coexpressing cells than did control NSP2WT. Finally, NSP2K294E exhibited defects in its capacity to induce LLPS droplet formation in vitro when incubated alongside NSP5. These results underscore the importance of NSP2 CTR flexibility in supporting the biogenesis of RV factories. IMPORTANCE Viruses often condense the materials needed for their replication into discrete intracellular factories. For rotaviruses, agents of severe gastroenteritis in children, factory formation is mediated in part by an octameric protein called NSP2. A flexible C-terminal region of NSP2 has been proposed to link several NSP2 octamers together, a feature that might be important for factory formation. Here, we created a change in NSP2 that reduced C-terminal flexibility and analyzed the impact on rotavirus factories. We found that the change caused the formation of smaller and more numerous factories that could not readily fuse together like those of the wild-type virus. The altered NSP2 protein also had a reduced capacity to form factory-like condensates in a test tube. Together, these results add to our growing understanding of how NSP2 supports rotavirus factory formation-a key step of viral replication.


Subject(s)
Rotavirus , Viral Nonstructural Proteins , Virus Replication , Phosphorylation , Rotavirus/chemistry , Rotavirus/physiology , Viral Nonstructural Proteins/chemistry
4.
EMBO Mol Med ; 15(3): e16491, 2023 03 08.
Article in English | MEDLINE | ID: mdl-36704923

ABSTRACT

Dysfunction of the endoplasmic reticulum (ER) in insulin-producing beta cells results in cell loss and diabetes mellitus. Here we report on five individuals from three different consanguineous families with infancy-onset diabetes mellitus and severe neurodevelopmental delay caused by a homozygous p.(Arg371Ser) mutation in FICD. The FICD gene encodes a bifunctional Fic domain-containing enzyme that regulates the ER Hsp70 chaperone, BiP, via catalysis of two antagonistic reactions: inhibitory AMPylation and stimulatory deAMPylation of BiP. Arg371 is a conserved residue in the Fic domain active site. The FICDR371S mutation partially compromises BiP AMPylation in vitro but eliminates all detectable deAMPylation activity. Overexpression of FICDR371S or knock-in of the mutation at the FICD locus of stressed CHO cells results in inappropriately elevated levels of AMPylated BiP and compromised secretion. These findings, guided by human genetics, highlight the destructive consequences of de-regulated BiP AMPylation and raise the prospect of tuning FICD's antagonistic activities towards therapeutic ends.


Subject(s)
Diabetes Mellitus , Endoplasmic Reticulum Chaperone BiP , Animals , Cricetinae , Humans , Infant , Protein Processing, Post-Translational , Cricetulus , Adenosine Monophosphate
5.
Redox Biol ; 53: 102338, 2022 07.
Article in English | MEDLINE | ID: mdl-35609400

ABSTRACT

Doxorubicin (DOX) is one of the most effective anticancer agents in clinical oncology. Its continued use, however, is severely limited by its dose-dependent cardiotoxicity which stems, in part, from its overproduction of reactive oxygen species (ROS) and often manifests itself as full-blown cardiomyopathy in patients, years after the cessation of treatment. Therefore, identifying DOX analogs, or prodrugs, with a diminished cardiotoxic profile is highly desirable. Herein, we describe a novel, H2O2-responsive DOX hybrid codrug (mutual prodrug) that has been rationally designed to concurrently liberate hydrogen sulfide (H2S), a purported cardioprotectant with anticancer activity, in an effort to maintain the antitumor effects of DOX while simultaneously reducing its cardiotoxic side effects. Experiments with cardiomyoblast cells in culture demonstrated a rapid accumulation of prodrug into the cells, but diminished apoptotic effects compared with DOX, dependent upon its release of H2S. Cells treated with the prodrug exhibited significantly higher Nrf2 activation relative to DOX-treated cells. Preliminary indications, using a mouse triple-negative breast cancer cell line sensitive to DOX treatment, are that the prodrug maintains considerable toxicity against the tumor-inducing cell line, suggesting significant promise for this prodrug as a cardioprotective chemotherapeutic to replace DOX.


Subject(s)
Prodrugs , Cardiotoxicity/drug therapy , Cardiotoxicity/etiology , Cell Line, Tumor , Doxorubicin/adverse effects , Humans , Hydrogen Peroxide , Prodrugs/pharmacology , Prodrugs/therapeutic use
6.
Nat Struct Mol Biol ; 28(10): 835-846, 2021 10.
Article in English | MEDLINE | ID: mdl-34625748

ABSTRACT

Many regulatory PPP1R subunits join few catalytic PP1c subunits to mediate phosphoserine and phosphothreonine dephosphorylation in metazoans. Regulatory subunits engage the surface of PP1c, locally affecting flexible access of the phosphopeptide to the active site. However, catalytic efficiency of holophosphatases towards their phosphoprotein substrates remains unexplained. Here we present a cryo-EM structure of the tripartite PP1c-PPP1R15A-G-actin holophosphatase that terminates signaling in the mammalian integrated stress response (ISR) in the pre-dephosphorylation complex with its substrate, translation initiation factor 2α (eIF2α). G-actin, whose essential role in eIF2α dephosphorylation is supported crystallographically, biochemically and genetically, aligns the catalytic and regulatory subunits, creating a composite surface that engages the N-terminal domain of eIF2α to position the distant phosphoserine-51 at the active site. Substrate residues that mediate affinity for the holophosphatase also make critical contacts with eIF2α kinases. Thus, a convergent process of higher-order substrate recognition specifies functionally antagonistic phosphorylation and dephosphorylation in the ISR.


Subject(s)
Protein Phosphatase 1/chemistry , Protein Phosphatase 1/metabolism , Stress, Physiological/physiology , eIF-2 Kinase/metabolism , Actins/chemistry , Actins/metabolism , Animals , CHO Cells , Catalytic Domain , Cricetulus , Cryoelectron Microscopy , Crystallography, X-Ray , Humans , Models, Molecular , Phosphorylation , Phosphoserine/metabolism , Protein Phosphatase 1/genetics , Reproducibility of Results , eIF-2 Kinase/genetics
7.
Cell Rep ; 35(7): 109144, 2021 05 18.
Article in English | MEDLINE | ID: mdl-34010647

ABSTRACT

Circulating polymers of α1-antitrypsin (α1AT) are neutrophil chemo-attractants and contribute to inflammation, yet cellular factors affecting their secretion remain obscure. We report on a genome-wide CRISPR-Cas9 screen for genes affecting trafficking of polymerogenic α1ATH334D. A CRISPR enrichment approach based on recovery of single guide RNA (sgRNA) sequences from phenotypically selected fixed cells reveals that cells with high-polymer content are enriched in sgRNAs targeting genes involved in "cargo loading into COPII-coated vesicles," where "COPII" is coat protein II, including the cargo receptors lectin mannose binding1 (LMAN1) and surfeit protein locus 4 (SURF4). LMAN1- and SURF4-disrupted cells display a secretion defect extending beyond α1AT monomers to polymers. Polymer secretion is especially dependent on SURF4 and correlates with a SURF4-α1ATH334D physical interaction and with their co-localization at the endoplasmic reticulum (ER). These findings indicate that ER cargo receptors co-ordinate progression of α1AT out of the ER and modulate the accumulation of polymeric α1AT not only by controlling the concentration of precursor monomers but also by promoting secretion of polymers.


Subject(s)
Endoplasmic Reticulum/metabolism , Polymers/metabolism , alpha 1-Antitrypsin/metabolism , Humans
8.
Mol Cell ; 81(1): 88-103.e6, 2021 01 07.
Article in English | MEDLINE | ID: mdl-33220178

ABSTRACT

The small molecule ISRIB antagonizes the activation of the integrated stress response (ISR) by phosphorylated translation initiation factor 2, eIF2(αP). ISRIB and eIF2(αP) bind distinct sites in their common target, eIF2B, a guanine nucleotide exchange factor for eIF2. We have found that ISRIB-mediated acceleration of eIF2B's nucleotide exchange activity in vitro is observed preferentially in the presence of eIF2(αP) and is attenuated by mutations that desensitize eIF2B to the inhibitory effect of eIF2(αP). ISRIB's efficacy as an ISR inhibitor in cells also depends on presence of eIF2(αP). Cryoelectron microscopy (cryo-EM) showed that engagement of both eIF2B regulatory sites by two eIF2(αP) molecules remodels both the ISRIB-binding pocket and the pockets that would engage eIF2α during active nucleotide exchange, thereby discouraging both binding events. In vitro, eIF2(αP) and ISRIB reciprocally opposed each other's binding to eIF2B. These findings point to antagonistic allostery in ISRIB action on eIF2B, culminating in inhibition of the ISR.


Subject(s)
Acetamides/chemistry , Cyclohexylamines/chemistry , Eukaryotic Initiation Factor-2B/chemistry , Eukaryotic Initiation Factor-2/chemistry , Allosteric Regulation , Animals , Binding Sites , CHO Cells , Cricetulus , Cryoelectron Microscopy , Eukaryotic Initiation Factor-2/genetics , Eukaryotic Initiation Factor-2/metabolism , Eukaryotic Initiation Factor-2B/genetics , Eukaryotic Initiation Factor-2B/metabolism , HeLa Cells , Humans , Phosphorylation
9.
Antioxidants (Basel) ; 9(12)2020 Dec 03.
Article in English | MEDLINE | ID: mdl-33287170

ABSTRACT

Chlamydia trachomatis (Ct) is a bacterial intracellular pathogen responsible for a plethora of diseases ranging from blindness to pelvic inflammatory diseases and cervical cancer. Although this disease is effectively treated with antibiotics, concerns for development of resistance prompt the need for new low-cost treatments. Here we report the activity of spilanthol (SPL), a natural compound with demonstrated anti-inflammatory properties, against Ct infections. Using chemical probes selective for imaging mitochondrial protein sulfenylation and complementary assays, we identify an increase in mitochondrial oxidative state by SPL as the underlying mechanism leading to disruption of host cell F-actin cytoskeletal organization and inhibition of chlamydial infection. The peroxidation product of SPL (SPL endoperoxide, SPLE), envisioned to be the active compound in the cellular milieu, was chemically synthesized and showed more potent anti-chlamydial activity. Comparison of SPL and SPLE reactivity with mammalian peroxiredoxins, demonstrated preferred reactivity of SPLE with Prx3, and virtual lack of SPL reaction with any of the reduced Prx isoforms investigated. Cumulatively, these findings support the function of SPL as a pro-drug, which is converted to SPLE in the cellular milieu leading to inhibition of Prx3, increased mitochondrial oxidation and disruption of F-actin network, and inhibition of Ct infection.

10.
Sci Rep ; 10(1): 15201, 2020 09 16.
Article in English | MEDLINE | ID: mdl-32939009

ABSTRACT

Cytotoxic drugs that are mechanistically distinct from current chemotherapies are attractive components of personalized combination regimens for combatting aggressive forms of cancer. To gain insight into the cellular mechanism of a potent platinum-acridine anticancer agent (compound 1), a correlation analysis of NCI-60 compound screening results and gene expression profiles was performed. A plasma membrane transporter, the solute carrier (SLC) human multidrug and toxin extrusion protein 1 (hMATE1, SLC47A1), emerged as the dominant predictor of cancer cell chemosensitivity to the hybrid agent (Pearson correlation analysis, p < 10-5) across a wide range of tissues of origin. The crucial role of hMATE1 was validated in lung adenocarcinoma cells (A549), which expresses high levels of the membrane transporter, using transporter inhibition assays and transient knockdown of the SLC47A1 gene, in conjunction with quantification of intracellular accumulation of compound 1 and cell viability screening. Preliminary data also show that HCT-116 colon cancer cells, in which hMATE1 is epigenetically repressed, can be sensitized to compound 1 by priming the cells with the drugs EPZ-6438 (tazemetostat) and EED226. Collectively, these results suggest that hMATE1 may have applications as a pan-cancer molecular marker to identify and target tumors that are likely to respond to platinum-acridines.


Subject(s)
Acridines/chemistry , Antineoplastic Agents/pharmacology , Benzamides/pharmacology , Organic Cation Transport Proteins/genetics , Organoplatinum Compounds/pharmacology , Platinum/chemistry , Pyridones/pharmacology , Sulfones/pharmacology , Triazoles/pharmacology , A549 Cells , Antineoplastic Agents/chemistry , Biphenyl Compounds , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Synergism , Epigenesis, Genetic/drug effects , Gene Expression Regulation, Neoplastic/drug effects , HCT116 Cells , Humans , Molecular Structure , Morpholines , Organoplatinum Compounds/chemistry , Pyrimethamine/pharmacology
12.
Org Biomol Chem ; 18(3): 495-499, 2020 01 22.
Article in English | MEDLINE | ID: mdl-31850447

ABSTRACT

A robust lipophilic dye, based on the structures of the benzothiadiazole heterocycle, was shown to be a potent fluorescent stain for the selective imaging of lipid droplets (LDs) within both live and fixed human cells. Its small molecular framework, large Stokes shift, and vastly improved photostability over that of the current status quo, Nile Red, highlight its tremendous potential as a versatile chemical tool for facilitating LD imaging and research.


Subject(s)
Fluorescent Dyes/chemistry , Lipid Droplets/metabolism , Thiadiazoles/chemistry , HeLa Cells , Humans , Lipid Droplets/chemistry , Staining and Labeling/methods
13.
Nature ; 578(7795): 444-448, 2020 02.
Article in English | MEDLINE | ID: mdl-31875646

ABSTRACT

Metformin, the world's most prescribed anti-diabetic drug, is also effective in preventing type 2 diabetes in people at high risk1,2. More than 60% of this effect is attributable to the ability of metformin to lower body weight in a sustained manner3. The molecular mechanisms by which metformin lowers body weight are unknown. Here we show-in two independent randomized controlled clinical trials-that metformin increases circulating levels of the peptide hormone growth/differentiation factor 15 (GDF15), which has been shown to reduce food intake and lower body weight through a brain-stem-restricted receptor. In wild-type mice, oral metformin increased circulating GDF15, with GDF15 expression increasing predominantly in the distal intestine and the kidney. Metformin prevented weight gain in response to a high-fat diet in wild-type mice but not in mice lacking GDF15 or its receptor GDNF family receptor α-like (GFRAL). In obese mice on a high-fat diet, the effects of metformin to reduce body weight were reversed by a GFRAL-antagonist antibody. Metformin had effects on both energy intake and energy expenditure that were dependent on GDF15, but retained its ability to lower circulating glucose levels in the absence of GDF15 activity. In summary, metformin elevates circulating levels of GDF15, which is necessary to obtain its beneficial effects on energy balance and body weight, major contributors to its action as a chemopreventive agent.


Subject(s)
Body Weight/drug effects , Energy Metabolism/drug effects , Growth Differentiation Factor 15/metabolism , Metformin/pharmacology , Administration, Oral , Adult , Aged , Animals , Blood Glucose/analysis , Blood Glucose/metabolism , Diet, High-Fat , Double-Blind Method , Energy Intake/drug effects , Enterocytes/cytology , Enterocytes/drug effects , Female , Glial Cell Line-Derived Neurotrophic Factor Receptors/antagonists & inhibitors , Glial Cell Line-Derived Neurotrophic Factor Receptors/deficiency , Glial Cell Line-Derived Neurotrophic Factor Receptors/genetics , Growth Differentiation Factor 15/blood , Growth Differentiation Factor 15/deficiency , Growth Differentiation Factor 15/genetics , Homeostasis/drug effects , Humans , Intestines/cytology , Intestines/drug effects , Male , Metformin/administration & dosage , Mice , Mice, Obese , Middle Aged , Weight Loss/drug effects
14.
Anal Biochem ; 588: 113472, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31605694

ABSTRACT

A method of RNA isolation using a solution of urea-LiCl as a denaturing agent was tested on stony coral. As the method does not require homogenization of tissues prior to their incubation in the denaturant, specimen collected in the field can be immediately transferred to the urea-LiCl solution. The method was also tested on tissues of other cnidarian species. RNA was isolated from fresh tissues of jellyfish and sea anemones using two protocols - that is, incubations in the urea-LiCl solution were either performed on homogenized tissues or on intact tissues or specimen. RNA quality was evaluated on a bioanalyser.


Subject(s)
Cnidaria/genetics , RNA/isolation & purification , Animals , Lithium Chloride/chemistry , Urea/chemistry
15.
Elife ; 82019 11 21.
Article in English | MEDLINE | ID: mdl-31749445

ABSTRACT

The eukaryotic translation initiation factor 2α (eIF2α) kinase GCN2 is activated by amino acid starvation to elicit a rectifying physiological program known as the Integrated Stress Response (ISR). A role for uncharged tRNAs as activating ligands of yeast GCN2 is supported experimentally. However, mouse GCN2 activation has recently been observed in circumstances associated with ribosome stalling with no global increase in uncharged tRNAs. We report on a mammalian CHO cell-based CRISPR-Cas9 mutagenesis screen for genes that contribute to ISR activation by amino acid starvation. Disruption of genes encoding components of the ribosome P-stalk, uL10 and P1, selectively attenuated GCN2-mediated ISR activation by amino acid starvation or interference with tRNA charging without affecting the endoplasmic reticulum unfolded protein stress-induced ISR, mediated by the related eIF2α kinase PERK. Wildtype ribosomes isolated from CHO cells, but not those with P-stalk lesions, stimulated GCN2-dependent eIF2α phosphorylation in vitro. These observations support a model whereby lack of a cognate charged tRNA exposes a latent capacity of the ribosome P-stalk to activate GCN2 in cells and help explain the emerging link between ribosome stalling and ISR activation.


Subject(s)
Amino Acids/metabolism , Protein Serine-Threonine Kinases/metabolism , Ribosomes/metabolism , Starvation/metabolism , Animals , CHO Cells , CRISPR-Cas Systems , Cricetulus , Endoplasmic Reticulum/metabolism , Gene Expression Regulation, Enzymologic , HeLa Cells , Humans , Kinetics , Ligands , Mice , Models, Molecular , Mutagenesis , Phosphorylation , Protein Binding , Protein Conformation , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/genetics , Protein Unfolding , RNA, Transfer/metabolism , Ribosomes/chemistry , Signal Transduction , Transcriptome , eIF-2 Kinase/genetics , eIF-2 Kinase/metabolism
16.
Cell Metab ; 29(3): 707-718.e8, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30639358

ABSTRACT

GDF15 is an established biomarker of cellular stress. The fact that it signals via a specific hindbrain receptor, GFRAL, and that mice lacking GDF15 manifest diet-induced obesity suggest that GDF15 may play a physiological role in energy balance. We performed experiments in humans, mice, and cells to determine if and how nutritional perturbations modify GDF15 expression. Circulating GDF15 levels manifest very modest changes in response to moderate caloric surpluses or deficits in mice or humans, differentiating it from classical intestinally derived satiety hormones and leptin. However, GDF15 levels do increase following sustained high-fat feeding or dietary amino acid imbalance in mice. We demonstrate that GDF15 expression is regulated by the integrated stress response and is induced in selected tissues in mice in these settings. Finally, we show that pharmacological GDF15 administration to mice can trigger conditioned taste aversion, suggesting that GDF15 may induce an aversive response to nutritional stress.


Subject(s)
Energy Intake/physiology , Growth Differentiation Factor 15/metabolism , Adult , Animals , Cell Line , Diet, High-Fat/methods , Growth Differentiation Factor 15/pharmacology , Humans , Mice , Mice, Inbred C57BL , Middle Aged , Young Adult
17.
Protein Sci ; 28(1): 216-227, 2019 01.
Article in English | MEDLINE | ID: mdl-30367535

ABSTRACT

Sulforaphane (SFN), a phytochemical found in broccoli and other cruciferous vegetables, is a potent antioxidant and anti-inflammatory agent with reported effects in cancer chemoprevention and suppression of infection with intracellular pathogens. Here we report on the impact of SFN on infection with Chlamydia trachomatis (Ct), a common sexually transmitted pathogen responsible for 131 million new cases annually worldwide. Astoundingly, we find that SFN as well as broccoli sprouts extract (BSE) promote Ct infection of human host cells. Both the number and size of Ct inclusions were increased when host cells were pretreated with SFN or BSE. The initial investigations presented here point to both the antioxidant and thiol alkylating properties of SFN as regulators of Ct infection. SFN decreased mitochondrial protein sulfenylation and promoted Ct development, which were both reversed by treatment with mitochondria-targeted paraquat (MitoPQ). Inhibition of the complement component 3 (complement C3) by SFN was also identified as a mechanism by which SFN promotes Ct infections. Mass spectrometry analysis found alkylation of cysteine 1010 (Cys1010) in complement C3 by SFN. The studies reported here raise awareness of the Ct infection promoting activity of SFN, and also identify potential mechanisms underlying this activity.


Subject(s)
Chlamydia Infections/metabolism , Chlamydia trachomatis/metabolism , Complement Activation/drug effects , Complement C3/metabolism , Isothiocyanates/pharmacology , Mitochondrial Proteins/metabolism , Chlamydia Infections/pathology , HeLa Cells , Humans , Oxidation-Reduction/drug effects , Sulfoxides
18.
Nat Biotechnol ; 2018 Nov 27.
Article in English | MEDLINE | ID: mdl-30480667

ABSTRACT

The DNA mutation produced by cellular repair of a CRISPR-Cas9-generated double-strand break determines its phenotypic effect. It is known that the mutational outcomes are not random, but depend on DNA sequence at the targeted location. Here we systematically study the influence of flanking DNA sequence on repair outcome by measuring the edits generated by >40,000 guide RNAs (gRNAs) in synthetic constructs. We performed the experiments in a range of genetic backgrounds and using alternative CRISPR-Cas9 reagents. In total, we gathered data for >109 mutational outcomes. The majority of reproducible mutations are insertions of a single base, short deletions or longer microhomology-mediated deletions. Each gRNA has an individual cell-line-dependent bias toward particular outcomes. We uncover sequence determinants of the mutations produced and use these to derive a predictor of Cas9 editing outcomes. Improved understanding of sequence repair will allow better design of gene editing experiments.

SELECTION OF CITATIONS
SEARCH DETAIL
...