Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Toxicol Chem ; 42(8): 1730-1742, 2023 08.
Article in English | MEDLINE | ID: mdl-37132612

ABSTRACT

The pituitary gland is a central regulator of reproduction, producing two gonadotropins, follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh), which regulate gonadal development, sex steroid synthesis, and gamete maturation. The present study sought to optimize an in vitro test system using pituitary cells isolated from previtellogenic female coho salmon and rainbow trout, focusing on fshb and lhb subunit gene expression. Initially, we optimized culture conditions for duration and benefits of culturing with and without addition of endogenous sex steroids (17ß-estradiol [E2] or 11-ketotestosterone) or gonadotropin-releasing hormone (GnRH). The results suggest that culturing with and without E2 was valuable because it could mimic the (+) feedback effects on Lh that are observed from in vivo studies. After optimizing assay conditions, a suite of 12 contaminants and other hormones was evaluated for their effects on fshb and lhb gene expression. Each chemical was tested at four to five different concentrations up to solubility limitations in cell culture media. The results indicate that more chemicals alter lhb synthesis than fshb. The more potent chemicals were estrogens (E2 and 17α-ethynylestradiol) and the aromatizable androgen testosterone, which induced lhb. The estrogen antagonists 4-OH-tamoxifen and prochloraz decreased the E2-stimulated expression of lhb. Among several selective serotonin reuptake inhibitors tested, the sertraline metabolite norsertraline was notable for both increasing fshb synthesis and decreasing the E2 stimulation of lhb. These results indicate that diverse types of chemicals can alter gonadotropin production in fish. Furthermore, we have shown that pituitary cell culture is useful for screening chemicals with potential endocrine-disrupting activity and can support the development of quantitative adverse outcome pathways in fish. Environ Toxicol Chem 2023;42:1730-1742. © 2023 SETAC.


Subject(s)
Salmonidae , Animals , Female , Salmonidae/metabolism , Pituitary Gland/metabolism , Gonadotropin-Releasing Hormone/metabolism , Gonadotropin-Releasing Hormone/pharmacology , Estradiol/metabolism , Reproduction , Steroids/metabolism
2.
Sci Total Environ ; 886: 163712, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37156386

ABSTRACT

There is ample evidence that a range of anthropogenic chemicals occur in the aquatic environment, some of which have the potential to cause harm. Contaminants of Emerging Concern (CECs) are a subset of anthropogenic compounds that are poorly characterized in terms of effects and occurrences, and that are generally unregulated. Due to the sheer number of chemicals used, it is necessary to identify and prioritize those that may cause biological impacts. A key challenge of doing so is the lack of traditional ecotoxicological information. The utilization of in vitro exposure-response studies or benchmarks based on in vivo data can provide a basis for developing threshold values for evaluation of potential impacts. There are challenges, including understanding the accuracy and range of application for modeled measures and translating in vitro response information from receptor models to apical endpoints. Despite this, the use of multiple lines of evidence increases the range of available information, and supports a weight-of-evidence approach to inform the screening and prioritization of CECs in the environment. The objective of this work is to perform an evaluation of CECs detected in an urban estuary, and to identify those that are most likely to elicit a biological response. Monitoring data from marine water, wastewater, and fish and shellfish tissue samples from 17 different campaigns combined with multiple biological response measures were compared with appropriate threshold values. CECs were categorized based on their potential to elicit a biological response; the uncertainty, based on consistency of lines of evidence, was also evaluated. Two-hundred-fifteen CECs were detected. Fifty-seven were identified as High Priority (likely to cause a biological effect), and 84 as Watch List (potential to cause biological effects). Due to the extent of the monitoring and range of the lines of evidence, this approach and results are applicable to other urbanized estuarine systems.


Subject(s)
Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Wastewater , Shellfish , Uncertainty
3.
Environ Monit Assess ; 194(10): 670, 2022 Aug 16.
Article in English | MEDLINE | ID: mdl-35970905

ABSTRACT

River otters (Lontra canadensis) are apex predators that bioaccumulate contaminants via their diet, potentially serving as biomonitors of watershed health. They reside throughout the Green-Duwamish River, WA (USA), a watershed encompassing an extreme urbanization gradient, including a US Superfund site slated for a 17-year remediation. The objectives of this study were to document baseline contaminant levels in river otters, assess otters' utility as top trophic-level biomonitors of contaminant exposure, and evaluate the potential for health impacts on this species. We measured a suite of contaminants of concern, lipid content, nitrogen stable isotopes (δ15N), and microsatellite DNA markers in 69 otter scat samples collected from twelve sites. Landcover characteristics were used to group sampling sites into industrial (Superfund site), suburban, and rural development zones. Concentrations of polychlorinated biphenyls (PCBs), polybrominated diphenyl ether flame-retardants (PBDEs), dichlorodiphenyl-trichloroethane and its metabolites (DDTs), and polycyclic aromatic hydrocarbons (PAHs) increased significantly with increasing urbanization, and were best predicted by models that included development zone, suggesting that river otters are effective biomonitors, as defined in this study. Diet also played an important role, with lipid content, δ15N or both included in all best models. We recommend river otter scat be included in evaluating restoration efforts in this Superfund site, and as a potentially useful monitoring tool wherever otters are found. We also report ΣPCB and ΣPAH exposures among the highest published for wild river otters, with almost 70% of samples in the Superfund site exceeding established levels of concern.


Subject(s)
Environmental Pollutants , Otters , Water Pollutants, Chemical , Animals , Environmental Monitoring , Environmental Pollutants/metabolism , Halogenated Diphenyl Ethers/analysis , Lipids , Water Pollutants, Chemical/analysis
4.
Aquat Toxicol ; 229: 105654, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33161306

ABSTRACT

Understanding how aquatic organisms respond to complex chemical mixtures remains one of the foremost challenges in modern ecotoxicology. Although oil spills are typically high-profile disasters that release hundreds or thousands of chemicals into the environment, there is growing evidence for a common adverse outcome pathway (AOP) for the vulnerable embryos and larvae of fish species that spawn in oiled habitats. Molecular initiating events involve the disruption of excitation-contraction coupling in individual cardiomyocytes, which then dysregulate the form and function of the embryonic heart. Phenanthrenes and other three-ring (tricyclic) polycyclic aromatic hydrocarbons (PAHs) are key drivers for this developmental cardiotoxicity and are also relatively enriched in land-based urban runoff. Similar to oil spills, stormwater discharged from roadways and other high-traffic impervious surfaces contains myriad contaminants, many of which are uncharacterized in terms of their chemical identity and toxicity to aquatic organisms. Nevertheless, given the exceptional sensitivity of the developing heart to tricyclic PAHs and the ubiquitous presence of these compounds in road runoff, cardiotoxicity may also be a dominant aspect of the stormwater-induced injury phenotype in fish early life stages. Here we assessed the effects of traffic-related runoff on the embryos and early larvae of Pacific herring (Clupea pallasii), a marine forage fish that spawns along the coastline of western North America. We used the well-characterized central features of the oil toxicity AOP for herring embryos as benchmarks for a detailed analysis of embryolarval cardiotoxicity across a dilution gradient ranging from 12 to 50% stormwater diluted in clean seawater. These injury indicators included measures of circulatory function, ventricular area, heart chamber looping, and the contractility of both the atrium and the ventricle. We also determined tissue concentrations of phenanthrenes and other PAHs in herring embryos. We find that tricyclic PAHs are readily bioavailable during cardiogenesis, and that stormwater-induced toxicity is in many respects indistinguishable from canonical crude oil toxicity. Given the chemical complexity of urban runoff, non-tricyclic PAH-mediated mechanisms of developmental toxicity in fish remain likely. However, from the standpoint of managing wild herring populations, our results suggest that stormwater-driven threats to individual survival (both near-term and delayed mortality) can be understood from decades of past research on crude oil toxicity. Moreover, Pacific herring embryos are promising sentinels for water quality monitoring in nearshore marine habitats, as in situand sensitive indicators of both toxic runoff and the effectiveness of pollution reduction efforts such as green stormwater infrastructure.


Subject(s)
Aquatic Organisms/physiology , Fishes/embryology , Heart/embryology , Petroleum/toxicity , Animals , Aquatic Organisms/drug effects , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A1/metabolism , Embryo, Nonmammalian/diagnostic imaging , Embryo, Nonmammalian/drug effects , Female , Fishes/genetics , Gene Expression Regulation, Enzymologic/drug effects , Heart/drug effects , Larva/drug effects , Male , Molecular Weight , North America , Polycyclic Aromatic Hydrocarbons/toxicity , Water/chemistry , Water Pollutants, Chemical/toxicity
5.
Sci Total Environ ; 712: 135516, 2020 Apr 10.
Article in English | MEDLINE | ID: mdl-31806347

ABSTRACT

Understanding the spatial extent, magnitude, and source of contaminant exposure in biota is necessary to formulate appropriate conservation measures to reduce or remediate contaminant exposure. However, obtaining such information for migratory animals is challenging. Juvenile Chinook salmon (Oncorhynchus tshawytscha), a threatened species throughout the US Pacific Northwest, are exposed to persistent organic pollutants (POPs), including polybrominated diphenyl ether (PBDE) flame retardants and polychlorinated biphenyls (PCBs), in many developed rivers and estuaries. This study used three types of complementary chemical tracer data (contaminant concentrations, POP fingerprints, and stable isotopes), to determine the location and source of contaminant exposure for natural- and hatchery-origin Chinook salmon migrating seaward through a developed watershed with multiple contaminant sources. Concentration data revealed that salmon were exposed to and accumulated predominantly PBDEs and PCBs in the lower mainstem region of the river, with higher PBDEs in natural- than hatchery-origin fish but similar PCBs in both groups, associated with differences in contaminant inputs and/or habitat use. The POP fingerprints of the natural-origin-fish captured from this region were also distinct from other region and origin sample groups, with much higher proportions of PBDEs in the total POP concentration, indicating a different contaminant source or habitat use than the hatchery-origin fish. Stable isotopes, independent tracers of food sources and habitat use, revealed that natural-origin fish from this region also had depleted δ15N signatures compared to other sample groups, associated with exposure to nutrient-rich wastewater. The PBDE-enhanced POP fingerprints in these salmon were correlated with the degree of depletion in nitrogen stable isotopes of the fish, suggesting a common wastewater source for both the PBDEs and the nitrogen. Identification of the location and source of contaminant exposure allows environmental managers to establish conservation measures to control contaminant inputs, necessary steps to improve the health of Chinook salmon and enhance their marine survival.


Subject(s)
Salmon , Animals , Environmental Pollutants , Estuaries , Northwestern United States , Polychlorinated Biphenyls , Water Pollutants, Chemical
6.
Biol Reprod ; 97(5): 731-745, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-29045593

ABSTRACT

Recent studies using several teleost models have revealed that androgens increase the size of previtellogenic (primary and/or early secondary) ovarian follicles. To explore our hypothesis that androgens drive the development of primary follicles into early secondary follicles, and to determine the mechanisms underlying these androgenic effects, we exposed juvenile coho salmon to near-physiological and relatively sustained levels of the nonaromatizable androgen 11-ketotestosterone (11-KT). This resulted in significant growth of primary ovarian follicles after 10 and 20 days, with follicles after 20 days displaying a morphological phenotype characteristic of early secondary follicles (presence of cortical alveoli). Utilizing the same experimental approach, we then analyzed how 11-KT rapidly altered the ovarian transcriptome after 1 and 3 days of treatment. RNA-Seq analysis revealed that 69 (day 1) and 1,022 (day 3) contiguous sequences (contigs) were differentially expressed relative to controls. The differentially expressed contigs mapped to genes including those encoding proteins involved in gonadotropin, steroid hormone, and growth factor signaling, and in cell and ovarian development, including genes with putative androgen-response elements. Biological functions and canonical pathways identified as potentially altered by 11-KT include those involved in ovarian development, tissue differentiation and remodeling, and lipid metabolism. We conclude that androgens play a major role in stimulating primary ovarian follicle development and the transition into secondary growth.


Subject(s)
Androgens/pharmacology , Oncorhynchus kisutch , Ovarian Follicle/drug effects , Testosterone/analogs & derivatives , Transcriptome/drug effects , Animals , Female , Testosterone/pharmacology
7.
Aquat Toxicol ; 178: 118-31, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27475653

ABSTRACT

It is well known that endocrine disrupting compounds (EDCs) present in wastewater treatment plant (WWTP) effluents interfere with reproduction in fish, including altered gonad development and induction of vitellogenin (Vtg), a female-specific egg yolk protein precursor produced in the liver. As a result, studies have focused on the effects of EDC exposure on the gonad and liver. However, impacts of environmental EDC exposure at higher levels of the hypothalamic-pituitary-gonad axis are less well understood. The pituitary gonadotropins, follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh) are involved in all aspects of gonad development and are subject to feedback from gonadal steroids making them a likely target of endocrine disruption. In this study, the effects of WWTP effluent exposure on pituitary gonadotropin mRNA expression were investigated to assess the utility of Lh beta-subunit (lhb) as a biomarker of estrogen exposure in juvenile coho salmon (Oncorhynchus kisutch). First, a controlled 72-h exposure to 17α-ethynylestradiol (EE2) and 17ß-trenbolone (TREN) was performed to evaluate the response of juvenile coho salmon to EDC exposure. Second, juvenile coho salmon were exposed to 0, 20 or 100% effluent from eight WWTPs from the Puget Sound, WA region for 72h. Juvenile coho salmon exposed to 2 and 10ng EE2L(-1) had 17-fold and 215-fold higher lhb mRNA levels relative to control fish. Hepatic vtg mRNA levels were dramatically increased 6670-fold, but only in response to 10ng EE2L(-1) and Fsh beta-subunit (fshb) mRNA levels were not altered by any of the treatments. In the WWTP effluent exposures, lhb mRNA levels were significantly elevated in fish exposed to five of the WWTP effluents. In contrast, transcript levels of vtg were not affected by any of the WWTP effluent exposures. Mean levels of natural and synthetic estrogens in fish bile were consistent with pituitary lhb expression, suggesting that the observed lhb induction may be due to estrogenic activity of the WWTP effluents. These results suggest that lhb gene expression may be a sensitive index of acute exposure to estrogenic chemicals in juvenile coho salmon. Further work is needed to determine the kinetics and specificity of lhb induction to evaluate its utility as a potential indicator of estrogen exposure in immature fish.


Subject(s)
Endocrine Disruptors/toxicity , Gonadotropins, Pituitary/metabolism , Oncorhynchus kisutch/metabolism , Pituitary Gland/drug effects , Water Pollutants, Chemical/toxicity , Animals , Ethinyl Estradiol/toxicity , Female , Follicle Stimulating Hormone/genetics , Follicle Stimulating Hormone/metabolism , Gene Expression/drug effects , Gonadotropins, Pituitary/genetics , Luteinizing Hormone/genetics , Luteinizing Hormone/metabolism , Oncorhynchus kisutch/growth & development , Pituitary Gland/metabolism , RNA, Messenger/metabolism , Trenbolone Acetate/toxicity , Waste Disposal, Fluid
8.
Aquat Toxicol ; 142-143: 146-63, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-24007788

ABSTRACT

Considerable research has been done on the effects of endocrine disrupting chemicals (EDCs) on reproduction and gene expression in the brain, liver and gonads of teleost fish, but information on impacts to the pituitary gland are still limited despite its central role in regulating reproduction. The aim of this study was to further our understanding of the potential effects of natural and synthetic estrogens on the brain-pituitary-gonad axis in fish by determining the effects of 17α-ethynylestradiol (EE2) on the pituitary transcriptome. We exposed sub-adult coho salmon (Oncorhynchus kisutch) to 0 or 12 ng EE2/L for up to 6 weeks and effects on the pituitary transcriptome of females were assessed using high-throughput Illumina(®) sequencing, RNA-Seq and pathway analysis. After 1 or 6 weeks, 218 and 670 contiguous sequences (contigs) respectively, were differentially expressed in pituitaries of EE2-exposed fish relative to control. Two of the most highly up- and down-regulated contigs were luteinizing hormone ß subunit (241-fold and 395-fold at 1 and 6 weeks, respectively) and follicle-stimulating hormone ß subunit (-3.4-fold at 6 weeks). Additional contigs related to gonadotropin synthesis and release were differentially expressed in EE2-exposed fish relative to controls. These included contigs involved in gonadotropin releasing hormone (GNRH) and transforming growth factor-ß signaling. There was an over-representation of significantly affected contigs in 33 and 18 canonical pathways at 1 and 6 weeks, respectively, including circadian rhythm signaling, calcium signaling, peroxisome proliferator-activated receptor (PPAR) signaling, PPARα/retinoid x receptor α activation, and netrin signaling. Network analysis identified potential interactions between genes involved in circadian rhythm and GNRH signaling, suggesting possible effects of EE2 on timing of reproductive events.


Subject(s)
Ethinyl Estradiol/toxicity , Oncorhynchus kisutch/physiology , Pituitary Gland/drug effects , Transcriptome , Water Pollutants, Chemical/toxicity , Animals , Endocrine System/drug effects , Female , Follicle Stimulating Hormone/genetics , Gonads/drug effects , Luteinizing Hormone/genetics , Oncorhynchus kisutch/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...