Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 8(1): e55345, 2013.
Article in English | MEDLINE | ID: mdl-23383161

ABSTRACT

To gain insight into differences in placental physiology between two swine breeds noted for their dissimilar reproductive performance, that is, the Chinese Meishan and white composite (WC), we examined gene expression profiles of placental tissues collected at 25, 45, 65, 85, and 105 days of gestation by microarrays. Using a linear mixed model, a total of 1,595 differentially expressed genes were identified between the two pig breeds using a false-discovery rate q-value ≤0.05. Among these genes, we identified breed-specific isoforms of XIST, a long non-coding RNA responsible X-chromosome dosage compensation in females. Additionally, we explored the interaction of placental gene expression and chromosomal location by DIGMAP and identified three Sus scrofa X chromosomal bands (Xq13, Xq21, Xp11) that represent transcriptionally active clusters that differ between Meishan and WC during placental development. Also, pathway analysis identified fundamental breed differences in placental cholesterol trafficking and its synthesis. Direct measurement of cholesterol confirmed that the cholesterol content was significantly higher in the Meishan versus WC placentae. Taken together, this work identifies key metabolic pathways that differ in the placentae of two swine breeds noted for differences in reproductive prolificacy.


Subject(s)
Cholesterol/metabolism , Fertility/physiology , Placenta/physiology , Swine/physiology , Transcription, Genetic/physiology , X Chromosome/metabolism , Animals , Computational Biology , Female , Gene Expression Profiling/veterinary , Gestational Age , Linear Models , Microarray Analysis/veterinary , Placenta/metabolism , Pregnancy , RNA, Long Noncoding/genetics , Real-Time Polymerase Chain Reaction/veterinary , Reverse Transcriptase Polymerase Chain Reaction/veterinary , Species Specificity , Swine/genetics , X Chromosome/genetics
2.
Mol Cancer Ther ; 10(10): 1839-45, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21750217

ABSTRACT

We have attempted to use a familial genetics strategy to study mechanisms of topoisomerase 1 (Top1) inhibition. Investigations have steadily been chipping away at the pathways involved in cellular response following Top1 inhibition for more than 20 years. Our system-wide approach, which phenotypes a collection of genotyped human cell lines for sensitivity to compounds and interrogates all genes and molecular pathways simultaneously. Previously, we characterized the in vitro sensitivity of 15 families of Centre d'Etude Polymorphisme Humain (CEPH) cell lines (n = 142) to 9 camptothecin analogues. Linkage analysis revealed a pattern of 7 quantitative trait loci (QTL) shared by all of the camptothecins. To identify which, if any, QTLs are related to the general mechanism of Top1 inhibition or should be considered camptothecin specific, we characterized the in vitro sensitivity of the same panel of CEPH cell lines to the indenisoquinolones, a structurally distinct class of Top1 inhibitors. Four QTLs on chromosomes 1, 5, 11, and 16 were shared by both the camptothecins and the indenoisoquinolines and are considered associated with the general mechanism of Top1 inhibition. The remaining 3 QTLs (chromosomes 6 and 20) are considered specific to camptothecin-induced cytotoxicity. Finally, 8 QTLs were identified, which were unique to the indenoisoquinolines.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Camptothecin/pharmacology , Genomics/methods , Isoquinolines/pharmacology , Topoisomerase I Inhibitors/pharmacology , Cell Line , Drug Evaluation, Preclinical/methods , Gene Expression Profiling , Humans , Oligonucleotide Array Sequence Analysis , Quantitative Trait Loci
3.
Pharmacogenomics ; 12(10): 1407-15, 2011 Oct.
Article in English | MEDLINE | ID: mdl-22008047

ABSTRACT

AIMS: Individualization of cancer chemotherapy based on the patient's genetic makeup holds promise for reducing side effects and improving efficacy. However, the relative contribution of genetics to drug response is unknown. MATERIALS & METHODS: In this study, we investigated the cytotoxic effect of 29 commonly prescribed chemotherapeutic agents from diverse drug classes on 125 lymphoblastoid cell lines derived from 14 extended families. RESULTS: The results of this systematic study highlight the variable role that genetics plays in response to cytotoxic drugs, ranging from a heritability of <0.15 for gemcitabine to >0.60 for epirubicin. CONCLUSION: Putative quantitative trait loci for cytotoxic response were identified, as well as drug class-specific signatures, which could indicate possible shared genetic mechanisms. In addition to the identification of putative quantitative trait locis, the results of this study inform the prioritization of chemotherapeutic drugs with a sizable genetic response component for future investigation.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Approval , Quantitative Trait Loci/genetics , Cell Line, Tumor , Dose-Response Relationship, Drug , Genetic Linkage , Humans , Pharmacogenetics , United States , United States Food and Drug Administration
4.
PLoS One ; 6(5): e17561, 2011 May 05.
Article in English | MEDLINE | ID: mdl-21573211

ABSTRACT

To date, the Centre d'Etude Polymorphism Humain (CEPH) cell line model has only been used as a pharmacogenomic tool to evaluate which genes are responsible for the disparity in response to a single drug. The purpose of this study was demonstrate the model's ability to establish a specific pattern of quantitative trait loci (QTL) related to a shared mechanism for multiple structurally related drugs, the camptothecins, which are Topoisomerase 1 inhibitors. A simultaneous screen of six camptothecin analogues for in vitro sensitivity in the CEPH cell lines resulted in cytotoxicity profiles and orders of potency which were in agreement with the literature. For all camptothecins studied, heritability estimates for cytotoxic response averaged 23.1 ± 2.6%. Nonparametric linkage analysis was used to identify a relationship between genetic markers and response to the camptothecins. Ten QTLs on chromosomes 1, 3, 5, 6, 11, 12, 16 and 20 were identified as shared by all six camptothecin analogues. In a separate validation experiment, nine of the ten QTLs were replicated at the significant and suggestive levels using three additional camptothecin analogues. To further refine this list of QTLs, another validation study was undertaken and seven of the nine QTLs were independently replicated for all nine camptothecin analogues. This is the first study using the CEPH cell lines that demonstrates that a specific pattern of QTLs could be established for a class of drugs which share a mechanism of action. Moreover, it is the first study to report replication of linkage results for drug-induced cytotoxicity using this model. The QTLs, which have been identified as shared by all camptothecins and replicated across multiple datasets, are of considerable interest; they harbor genes related to the shared mechanism of action for the camptothecins, which are responsible for variation in response.


Subject(s)
Camptothecin/adverse effects , Topoisomerase I Inhibitors/adverse effects , Cell Line , Cell Survival/drug effects , Chromosome Mapping , Genetic Linkage/drug effects , Humans , Inhibitory Concentration 50 , Pedigree , Quantitative Trait Loci/genetics
5.
BioData Min ; 3(1): 8, 2010 Nov 18.
Article in English | MEDLINE | ID: mdl-21087514

ABSTRACT

BACKGROUND: A fundamental goal of human genetics is the discovery of polymorphisms that predict common, complex diseases. It is hypothesized that complex diseases are due to a myriad of factors including environmental exposures and complex genetic risk models, including gene-gene interactions. Such epistatic models present an important analytical challenge, requiring that methods perform not only statistical modeling, but also variable selection to generate testable genetic model hypotheses. This challenge is amplified by recent advances in genotyping technology, as the number of potential predictor variables is rapidly increasing. METHODS: Decision trees are a highly successful, easily interpretable data-mining method that are typically optimized with a hierarchical model building approach, which limits their potential to identify interacting effects. To overcome this limitation, we utilize evolutionary computation, specifically grammatical evolution, to build decision trees to detect and model gene-gene interactions. In the current study, we introduce the Grammatical Evolution Decision Trees (GEDT) method and software and evaluate this approach on simulated data representing gene-gene interaction models of a range of effect sizes. We compare the performance of the method to a traditional decision tree algorithm and a random search approach and demonstrate the improved performance of the method to detect purely epistatic interactions. RESULTS: The results of our simulations demonstrate that GEDT has high power to detect even very moderate genetic risk models. GEDT has high power to detect interactions with and without main effects. CONCLUSIONS: GEDT, while still in its initial stages of development, is a promising new approach for identifying gene-gene interactions in genetic association studies.

6.
BMC Genomics ; 9: 252, 2008 May 29.
Article in English | MEDLINE | ID: mdl-18510738

ABSTRACT

BACKGROUND: Genome-wide detection of single feature polymorphisms (SFP) in swine using transcriptome profiling of day 25 placental RNA by contrasting probe intensities from either Meishan or an occidental composite breed with Affymetrix porcine microarrays is presented. A linear mixed model analysis was used to identify significant breed-by-probe interactions. RESULTS: Gene specific linear mixed models were fit to each of the log2 transformed probe intensities on these arrays, using fixed effects for breed, probe, breed-by-probe interaction, and a random effect for array. After surveying the day 25 placental transcriptome, 857 probes with a q-value < or = 0.05 and |fold change| > or = 2 for the breed-by-probe interaction were identified as candidates containing SFP. To address the quality of the bioinformatics approach, universal pyrosequencing assays were designed from Affymetrix exemplar sequences to independently assess polymorphisms within a subset of probes for validation. Additionally probes were randomly selected for sequencing to determine an unbiased confirmation rate. In most cases, the 25-mer probe sequence printed on the microarray diverged from Meishan, not occidental crosses. This analysis was used to define a set of highly reliable predicted SFPs according to their probability scores. CONCLUSION: By applying a SFP detection method to two mammalian breeds for the first time, we detected transition and transversion single nucleotide polymorphisms, as well as insertions/deletions which can be used to rapidly develop markers for genetic mapping and association analysis in species where high density genotyping platforms are otherwise unavailable.SNPs and INDELS discovered by this approach have been publicly deposited in NCBI's SNP repository dbSNP. This method is an attractive bioinformatics tool for uncovering breed-by-probe interactions, for rapidly identifying expressed SNPs, for investigating potential functional correlations between gene expression and breed polymorphisms, and is robust enough to be used on any Affymetrix gene expression platform.


Subject(s)
INDEL Mutation , Polymorphism, Single Nucleotide , Swine/genetics , Animals , Base Sequence , Computational Biology , DNA/genetics , Female , Fetus/metabolism , Gene Expression Profiling , Linear Models , Male , Oligonucleotide Array Sequence Analysis/methods , Oligonucleotide Array Sequence Analysis/statistics & numerical data , Placenta/metabolism , Pregnancy , RNA/genetics , Species Specificity
7.
Genet Evol Comput Conf ; 2008: 353-354, 2008.
Article in English | MEDLINE | ID: mdl-21197143

ABSTRACT

Grammatical Evolution Neural Networks (GENN) is a computational method designed to detect gene-gene interactions in genetic epidemiology, but has so far only been evaluated in situations with balanced numbers of cases and controls. Real data, however, rarely has such perfectly balanced classes. In the current study, we test the power of GENN to detect interactions in data with a range of class imbalance using two fitness functions (classification error and balanced error), as well as data re-sampling. We show that when using classification error, class imbalance greatly decreases the power of GENN. Re-sampling methods demonstrated improved power, but using balanced accuracy resulted in the highest power. Based on the results of this study, balanced error has replaced classification error in the GENN algorithm.

SELECTION OF CITATIONS
SEARCH DETAIL
...