Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Genetica ; 122(1): 47-9, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15619960

ABSTRACT

With the completion of the first draft of the human genome sequence, the next major challenge is assigning function to genes. One approach is genome-wide random chemical mutagenesis, followed by screening for mutant phenotypes of interest and subsequent mapping and identification of the mutated genes in question. We (a consortium made up of GlaxoSmithKline, the MRC Mammalian Genetics Unit and Mouse Genome Centre, Harwell, Imperial College, London, and the Royal London Hospital) have used ENU mutagenesis in the mouse for the rapid generation of novel mutant phenotypes for use as animal models of human disease and for gene function assignment (Nolan et al., 2000). As of 2003, 35,000 mice have been produced to date in a genome-wide screen for dominant mutations and screened using a variety of screening protocols. Nearly 200 mutants have been confirmed as heritable and added to the mouse mutant catalogue and, overall, we can extrapolate that we have recovered over 700 mutants from the screening programme. For further information on the project and details of the data, see http://www.mgu.har.mrc.ac.uk/mutabase.


Subject(s)
Chromosome Mapping , Disease Models, Animal , Genome , Mice/genetics , Animals , Mutation , Phenotype
2.
J Assoc Res Otolaryngol ; 4(2): 130-8, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12943368

ABSTRACT

Otitis media is the most common cause of hearing impairment in children and is primarily characterized by inflammation of the middle ear mucosa. Yet nothing is known of the underlying genetic pathways predisposing to otitis media in the human population. Increasingly, large-scale mouse mutagenesis programs have undertaken systematic and genome-wide efforts to recover large numbers of novel mutations affecting a diverse array of phenotypic areas involved with genetic disease including deafness. As part of the UK mutagenesis program, we have identified a novel deaf mouse mutant, Jeff (Jf). Jeff maps to the distal region of mouse chromosome 17 and presents with fluid and pus in the middle ear cavity. Jeff mutants are 21% smaller than wild-type littermates, have a mild craniofacial abnormality, and have elevated hearing thresholds. Middle ear epithelia of Jeff mice show evidence of a chronic proliferative otitis media. The Jeff mutant should prove valuable in elucidating the underlying genetic pathways predisposing to otitis media.


Subject(s)
Deafness/genetics , Disease Models, Animal , Mice, Mutant Strains/genetics , Otitis Media with Effusion/genetics , Proteins/genetics , Animals , Auditory Threshold , Body Constitution , Chromosome Mapping , Chronic Disease , Craniofacial Abnormalities/genetics , Deafness/physiopathology , Humans , Mice , Otitis Media with Effusion/pathology , Otitis Media with Effusion/physiopathology , Suppuration
3.
Nat Genet ; 34(4): 421-8, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12833159

ABSTRACT

The whirler mouse mutant (wi) does not respond to sound stimuli, and detailed ultrastructural analysis of sensory hair cells in the organ of Corti of the inner ear indicates that the whirler gene encodes a protein involved in the elongation and maintenance of stereocilia in both inner hair cells (IHCs) and outer hair cells (OHCs). BAC-mediated transgene correction of the mouse phenotype and mutation analysis identified the causative gene as encoding a novel PDZ protein called whirlin. The gene encoding whirlin also underlies the human autosomal recessive deafness locus DFNB31. In the mouse cochlea, whirlin is expressed in the sensory IHC and OHC stereocilia. Our findings suggest that this novel PDZ domain-containing molecule acts as an organizer of submembranous molecular complexes that control the coordinated actin polymerization and membrane growth of stereocilia.


Subject(s)
Deafness/genetics , Gene Expression , Membrane Proteins/genetics , Proteins/genetics , Amino Acid Sequence , Animals , Chromosome Mapping , Cilia/physiology , Cilia/ultrastructure , DNA Mutational Analysis , DNA, Complementary/genetics , Genes, Recessive , Hair Cells, Auditory, Inner/ultrastructure , Hair Cells, Auditory, Outer/ultrastructure , Humans , Membrane Proteins/physiology , Mice , Mice, Mutant Strains , Mice, Transgenic , Molecular Sequence Data , Phenotype , Proteins/physiology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Homology, Amino Acid , Species Specificity
4.
Semin Cell Dev Biol ; 14(1): 19-24, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12524003

ABSTRACT

The systematic identification of the function of all the genes in the mammalian genome is one of the major scientific challenges for the 21st century. A comprehensive insight into mammalian gene function will illuminate our understanding of the genetic bases of disease. Mouse mutagenesis is a powerful tool for the study of mammalian gene function. Most recently, a number of approaches employing the chemical mutagen ethylnitrosourea (ENU) have been utilised by mouse geneticists to deliver a substantial new collection of mouse disease models. The growing mouse mutant archive provides a powerful resource for the identification of novel genes involved with human genetic disease.


Subject(s)
Disease Models, Animal , Mutagenesis , Animals , Chromosome Mapping , Ethylnitrosourea , Genomics , Mice , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...