Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Fish Biol ; 101(2): 408-413, 2022 Aug.
Article in English | MEDLINE | ID: mdl-34590319

ABSTRACT

Human-mediated habitat fragmentation has been proposed as the main factor driving hybridization between the sympatric migratory European shads Alosa alosa and Alosa fallax, which has co-occurred with substantial population declines in A. alosa. In river systems across Great Britain, shad are negatively affected by navigation weirs constructed in the last 150 years that impede their spawning migrations. Consequently, the aim here was to assess the impact of human disturbances on the genetic introgression and population structure of shad in Great Britain through genotyping 119 Alosa spp. using 24 microsatellite loci.


Subject(s)
Fishes , Genetics, Population , Animals , Ecosystem , Fishes/genetics , Humans , Hybridization, Genetic , Microsatellite Repeats , Rivers
2.
BMC Ecol Evol ; 21(1): 9, 2021 01 23.
Article in English | MEDLINE | ID: mdl-33514313

ABSTRACT

BACKGROUND: The earliest records in Britain for the western European house mouse (Mus musculus domesticus) date from the Late Bronze Age. The arrival of this commensal species in Britain is thought to be related to human transport and trade with continental Europe. In order to study this arrival, we collected a total of 16 ancient mouse mandibulae from four early British archaeological sites, ranging from the Late Bronze Age to the Roman period. RESULTS: From these, we obtained ancient mitochondrial DNA (mtDNA) house mouse sequences from eight house mice from two of the sites dating from the Late Bronze to Middle Iron Age. We also obtained five ancient mtDNA wood mouse (Apodemus spp.) sequences from all four sites. The ancient house mouse sequences found in this study were from haplogroups E (N = 6) and D (N = 2). Modern British house mouse mtDNA sequences are primarily characterised by haplogroups E and F and, much less commonly, haplogroup D. CONCLUSIONS: The presence of haplogroups D and E in our samples and the dating of the archaeological sites provide evidence of an early house mouse colonisation that may relate to Late Bronze Age/Iron Age trade and/or human expansion. Our results confirm the hypothesis, based on zooarchaeological evidence and modern mtDNA predictions, that house mice, with haplogroups D and E, were established in Britain by the Iron Age and, in the case of haplogroup E, possibly as early as the Late Bronze Age.


Subject(s)
DNA, Ancient , DNA, Mitochondrial , Animals , DNA, Mitochondrial/genetics , Europe , Humans , Mice , Mitochondria , United Kingdom
3.
Parasit Vectors ; 13(1): 81, 2020 Feb 17.
Article in English | MEDLINE | ID: mdl-32066491

ABSTRACT

BACKGROUND: Sphaerothecum destruens is an obligate intracellular fish parasite which has been identified as a serious threat to freshwater fishes. Taxonomically, S. destruens belongs to the order Dermocystida within the class Ichthyosporea (formerly referred to as Mesomycetozoea), which sits at the animal-fungal boundary. Mitochondrial DNA (mtDNA) sequences can be valuable genetic markers for species detection and are increasingly used in environmental DNA (eDNA) based species detection. Furthermore, mtDNA sequences can be used in epidemiological studies by informing detection, strain identification and geographical spread. METHODS: We amplified the entire mitochondrial (mt) genome of S. destruens in two overlapping long fragments using primers designed based on the cox1, cob and nad5 partial sequences. The mt-genome architecture of S. destruens was then compared to close relatives to gain insights into its evolution. RESULTS: The complete mt-genome of Sphaerothecum destruens is 23,939 bp in length and consists of 47 genes including 21 protein-coding genes, 2 rRNA, 22 tRNA and two unidentified open reading frames. The mitochondrial genome of S. destruens is intronless and compact with a few intergenic regions and includes genes that are often missing from animal and fungal mt-genomes, such as, the four ribosomal proteins (small subunit rps13 and 14; large subunit rpl2 and 16), tatC (twin-arginine translocase component C), and ccmC and ccmF (cytochrome c maturation protein ccmC and heme lyase). CONCLUSIONS: We present the first mt-genome of S. destruens which also represents the first mt-genome for the order Dermocystida. The availability of the mt-genome can assist the detection of S. destruens and closely related parasites in eukaryotic diversity surveys using eDNA and assist epidemiological studies by improving molecular detection and tracking the parasite's spread. Furthermore, as the only representative of the order Dermocystida, its mt-genome can be used in the study of mitochondrial evolution of the unicellular relatives of animals.


Subject(s)
Fish Diseases/parasitology , Fishes/parasitology , Genome, Mitochondrial , Mesomycetozoea/genetics , Animals , DNA Primers/genetics , Genetic Markers , Phylogeny
4.
Ecol Evol ; 9(11): 6547-6558, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31236243

ABSTRACT

The Eurasian red squirrel (Sciurus vulgaris) is an emblematic species for conservation, and its decline in the British Isles exemplifies the impact that alien introductions can have on native ecosystems. Indeed, red squirrels in this region have declined dramatically over the last 60 years due to the spread of squirrelpox virus following the introduction of the gray squirrel (Sciurus carolinensis). Currently, red squirrel populations in Britain are fragmented and need to be closely monitored in order to assess their viability and the effectiveness of conservation efforts. The situation is even more dramatic in the South of England, where S. vulgaris survives only on islands (Brownsea Island, Furzey Island, and the Isle of Wight). Using the D-loop, we investigated the genetic diversity and putative ancestry of the squirrels from Southern England and compared them to a European dataset composed of 1,016 samples from 54 populations. We found that our three populations were more closely related to other squirrels from the British Isles than squirrels from Europe, showed low genetic diversity, and also harbored several private haplotypes. Our study demonstrates how genetically unique the Southern English populations are in comparison with squirrels from the continental European range. We report the presence of four private haplotypes, suggesting that these populations may potentially harbor distinct genetic lineages. Our results emphasize the importance of preserving these isolated red squirrel populations for the conservation of the species.

5.
Evolution ; 72(4): 878-892, 2018 04.
Article in English | MEDLINE | ID: mdl-29528493

ABSTRACT

Convergent evolution in similar environments constitutes strong evidence of adaptive evolution. Transported with people around the world, house mice colonized even remote areas, such as Sub-Antarctic islands. There, they returned to a feral way of life, shifting towards a diet enriched in terrestrial macroinvertebrates. Here, we test the hypothesis that this triggered convergent evolution of the mandible, a morphological character involved in food consumption. Mandible shape from four Sub-Antarctic islands was compared to phylogeny, tracing the history of colonization, and climatic conditions. Mandible shape was primarily influenced by phylogenetic history, thus discarding the hypothesis of convergent evolution. The biomechanical properties of the jaw were then investigated. Incisor in-lever and temporalis out-lever suggested an increase in the velocity of incisor biting, in agreement with observations on various carnivorous and insectivorous rodents. The mechanical advantage related to incisor biting also revealed an increased functional performance in Sub-Antarctic populations, and appears to be an adaptation to catch prey more efficiently. The amount of change involved was larger than expected for a plastic response, suggesting microevolutionary processes were evolved. This study thus denotes some degree of adaptive convergent evolution related to changes in habitat-related changes in dietary items in Sub-Antarctic mice, but only regarding simple, functionally relevant aspects of mandible morphology.


Subject(s)
Biological Evolution , Mandible/anatomy & histology , Mice/anatomy & histology , Adaptation, Biological , Animals , Animals, Wild/anatomy & histology , Antarctic Regions , Diet , Falkland Islands , Indian Ocean Islands , Islands , Phylogeny
6.
Int J Parasitol ; 48(6): 473-481, 2018 05.
Article in English | MEDLINE | ID: mdl-29438670

ABSTRACT

Species translocation leads to disease emergence in native species of considerable economic importance. Generalist parasites are more likely to be transported, become established and infect new hosts, thus their risk needs to be evaluated. Freshwater systems are particularly at risk from parasite introductions due to the frequency of fish movements, lack of international legislative controls for non-listed pathogens and inherent difficulties with monitoring disease introductions in wild fish populations. Here we used one of the world's most invasive freshwater fish, the topmouth gudgeon, Pseudorasbora parva, to demonstrate the risk posed by an emergent generalist parasite, Sphaerothecum destruens. Pseudorasbora parva has spread to 32 countries from its native range in China through the aquaculture trade and has introduced S. destruens to at least five of these. We systematically investigated the spread of S. destruens through Great Britain and its establishment in native fish communities through a combination of phylogenetic studies of the host and parasite and a novel environmental DNA detection assay. Molecular approaches confirmed that S. destruens is present in 50% of the P. parva communities tested and was also detected in resident native fish communities but in the absence of notable histopathological changes. We identified specific P. parva haplotypes associated with S. destruens and evaluated the risk of disease emergence from this cryptic fish parasite. We provide a framework that can be applied to any aquatic pathogen to enhance detection and help mitigate future disease risks in wild fish populations.


Subject(s)
Cyprinidae/parasitology , Fish Diseases/parasitology , Mesomycetozoea Infections/parasitology , Mesomycetozoea , Phylogeny , Animals , Communicable Diseases, Emerging , Fish Diseases/epidemiology , Host Specificity , Mesomycetozoea/genetics , Mesomycetozoea Infections/epidemiology , United Kingdom/epidemiology
7.
Emerg Microbes Infect ; 6(8): e76, 2017 Aug 23.
Article in English | MEDLINE | ID: mdl-28831194

ABSTRACT

Non-native species are often linked to the introduction of novel pathogens with detrimental effects on native biodiversity. Since Sphaerothecum destruens was first discovered as a fish pathogen in the United Kingdom, it has been identified as a potential threat to European fish biodiversity. Despite this parasite's emergence and associated disease risk, there is still a poor understanding of its origin in Europe. Here, we provide the first evidence to support the hypothesis that S. destruens was accidentally introduced to Europe from China along with its reservoir host Pseudorasbora parva via the aquaculture trade. This is the first study to confirm the presence of S. destruens in China, and it has expanded the confirmed range of S. destruens to additional locations in Europe. The demographic analysis of S. destruens and its host P. parva in their native and invasive range further supported the close association of both species. This research has direct significance and management implications for S. destruens in Europe as a non-native parasite.


Subject(s)
Communicable Diseases, Emerging/veterinary , Cyprinidae/parasitology , Fish Diseases/parasitology , Introduced Species , Mesomycetozoea Infections/parasitology , Mesomycetozoea/pathogenicity , Animals , Aquaculture , China/epidemiology , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/parasitology , Europe/epidemiology , Fish Diseases/epidemiology , Mesomycetozoea/isolation & purification , Mesomycetozoea Infections/epidemiology , United Kingdom/epidemiology
8.
Proc Biol Sci ; 283(1824)2016 Feb 10.
Article in English | MEDLINE | ID: mdl-26842576

ABSTRACT

By accompanying human travels since prehistorical times, the house mouse dispersed widely throughout the world, and colonized many islands. The origin of the travellers determined the phylogenetic source of the insular mice, which encountered diverse ecological and environmental conditions on the various islands. Insular mice are thus an exceptional model to disentangle the relative role of phylogeny, ecology and climate in evolution. Molar shape is known to vary according to phylogeny and to respond to adaptation. Using for the first time a three-dimensional geometric morphometric approach, compared with a classical two-dimensional quantification, the relative effects of size variation, phylogeny, climate and ecology were investigated on molar shape diversity across a variety of islands. Phylogeny emerged as the factor of prime importance in shaping the molar. Changes in competition level, mostly driven by the presence or absence of the wood mouse on the different islands, appeared as the second most important effect. Climate and size differences accounted for slight shape variation. This evidences a balanced role of random differentiation related to history of colonization, and of adaptation possibly related to resource exploitation.


Subject(s)
Biological Evolution , Mice/anatomy & histology , Mice/physiology , Molar/anatomy & histology , Phylogeny , Animal Distribution , Animals , Atlantic Islands , DNA, Mitochondrial/genetics , Europe , Female , Indian Ocean Islands , Male , Mice/classification , Mice/genetics , Sequence Analysis, DNA
9.
PLoS One ; 10(7): e0132801, 2015.
Article in English | MEDLINE | ID: mdl-26192946

ABSTRACT

Geometric morphometrics aims to characterize of the geometry of complex traits. It is therefore by essence multivariate. The most popular methods to investigate patterns of differentiation in this context are (1) the Principal Component Analysis (PCA), which is an eigenvalue decomposition of the total variance-covariance matrix among all specimens; (2) the Canonical Variate Analysis (CVA, a.k.a. linear discriminant analysis (LDA) for more than two groups), which aims at separating the groups by maximizing the between-group to within-group variance ratio; (3) the between-group PCA (bgPCA) which investigates patterns of between-group variation, without standardizing by the within-group variance. Standardizing within-group variance, as performed in the CVA, distorts the relationships among groups, an effect that is particularly strong if the variance is similarly oriented in a comparable way in all groups. Such shared direction of main morphological variance may occur and have a biological meaning, for instance corresponding to the most frequent standing genetic variation in a population. Here we undertake a case study of the evolution of house mouse molar shape across various islands, based on the real dataset and simulations. We investigated how patterns of main variance influence the depiction of among-group differentiation according to the interpretation of the PCA, bgPCA and CVA. Without arguing about a method performing 'better' than another, it rather emerges that working on the total or between-group variance (PCA and bgPCA) will tend to put the focus on the role of direction of main variance as line of least resistance to evolution. Standardizing by the within-group variance (CVA), by dampening the expression of this line of least resistance, has the potential to reveal other relevant patterns of differentiation that may otherwise be blurred.


Subject(s)
Biological Evolution , Molar/anatomy & histology , Animals , DNA, Mitochondrial/classification , Discriminant Analysis , Genetic Variation , Mice , Mitochondria/genetics , Multivariate Analysis , Phenotype , Phylogeny , Principal Component Analysis
10.
BMC Evol Biol ; 15: 26, 2015 Feb 25.
Article in English | MEDLINE | ID: mdl-25888407

ABSTRACT

BACKGROUND: The phylogeography of the house mouse (Mus musculus L.), an emblematic species for genetic and biomedical studies, is only partly understood, essentially because of a sampling bias towards its most peripheral populations in Europe, Asia and the Americas. Moreover, the present-day phylogeographic hypotheses stem mostly from the study of mitochondrial lineages. In this article, we complement the mtDNA studies with a comprehensive survey of nuclear markers (19 microsatellite loci) typed in 963 individuals from 47 population samples, with an emphasis on the putative Middle-Eastern centre of dispersal of the species. RESULTS: Based on correspondence analysis, distance and allele-sharing trees, we find a good coherence between geographical origin and genetic make-up of the populations. We thus confirm the clear distinction of the three best described peripheral subspecies, M. m. musculus, M. m. domesticus and M. m. castaneus. A large diversity was found in the Iranian populations, which have had an unclear taxonomic status to date. In addition to samples with clear affiliation to M. m. musculus and M. m. domesticus, we find two genetic groups in Central and South East Iran, which are as distinct from each other as they are from the south-east Asian M. m. castaneus. These groups were previously also found to harbor distinct mitochondrial haplotypes. CONCLUSION: We propose that the Iranian plateau is home to two more taxonomic units displaying complex primary and secondary relationships with their long recognized neighbours. This central region emerges as the area with the highest known diversity of mouse lineages within a restricted geographical area, designating it as the focal place to study the mechanisms of speciation and diversification of this species.


Subject(s)
Mice/classification , Mice/genetics , Phylogeography , Alleles , Animals , DNA, Mitochondrial/genetics , Genetics, Population , Iran , Microsatellite Repeats
11.
Mol Ecol ; 22(7): 1904-16, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23398547

ABSTRACT

The microbial communities inhabiting the mammalian intestinal tract play an important role in diverse aspects of host biology. However, little is known regarding the forces shaping variation in these communities and their influence on host fitness. To shed light on the contributions of host genetics, transmission and geography to diversity in microbial communities between individuals, we performed a survey of intestinal microbial communities in a panel of 121 house mice derived from eight locations across Western Europe using pyrosequencing of the bacterial 16S rRNA gene. The host factors studied included population structure estimated by microsatellite loci and mitochondrial DNA, genetic distance and geography. To determine whether host tissue (mucosa)-associated communities display properties distinct from those of the lumen, both the caecal mucosa and contents were examined. We identified Bacteroides, Robinsoniella and Helicobacter as the most abundant genera in both the caecal content and mucosa-associated communities of wild house mice. Overall, we found geography to be the most significant factor explaining patterns of diversity in the intestinal microbiota, with a comparatively weaker influence of host population structure and genetic distance. Furthermore, the influence of host genetic distance was limited to the mucosa communities, consistent with this environment being more intimately coupled to the host.


Subject(s)
Intestines/microbiology , Metagenome/genetics , Mice/microbiology , Animals , DNA, Bacterial/genetics , DNA, Mitochondrial/genetics , Europe , France , Gene-Environment Interaction , Genetic Loci , Genetic Variation , Germany , Microsatellite Repeats , Molecular Sequence Data , Phylogeography , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
12.
Biol Lett ; 9(2): 20121123, 2013 Apr 23.
Article in English | MEDLINE | ID: mdl-23389667

ABSTRACT

Island colonizations are excellent models for studying early processes of evolution. We found in a previous study on mice that had colonized the sub-Antarctic Kerguelen Archipelago about 200 years ago that they were derived from a single founder lineage and that this showed an unexpectedly large number of new mutations in the mitochondrial D-loop. To assess whether positive selection has played a role in the emergence of these variants, we have obtained 16 full mitochondrial genome sequences from these mice. For comparison, we have compiled 57 mitochondrial genome sequences from laboratory inbred lines that became established about 100 years ago, also starting from a single founder lineage. We find that the island mice and the laboratory lines show very similar mutation frequencies and patterns. None of the patterns in the Kerguelen mice provides evidence for positive selection. We conclude that nearly neutral evolutionary processes that assume the presence of slightly deleterious variants can fully explain the patterns. This supports the notion of time-dependency of molecular evolution and provides a new calibration point. Based on the observed mutation frequency, we calculate an average evolutionary rate of 0.23 substitutions per site per Myr for the earliest time frame of divergence, which is about six times higher than the long-term rate of 0.037 substitutions per site per Myr.


Subject(s)
Mice/genetics , Mitochondria/genetics , Mutation Rate , Selection, Genetic , Animals , Evolution, Molecular , Founder Effect , Genes, rRNA , Genetic Drift , Genome, Mitochondrial , Haplotypes , Islands , Mice, Inbred Strains/genetics , Mutation , NADH Dehydrogenase/genetics , Time Factors
13.
BMC Evol Biol ; 10: 325, 2010 Oct 26.
Article in English | MEDLINE | ID: mdl-20977744

ABSTRACT

BACKGROUND: Starting from Western Europe, the house mouse (Mus musculus domesticus) has spread across the globe in historic times. However, most oceanic islands were colonized by mice only within the past 300 years. This makes them an excellent model for studying the evolutionary processes during early stages of new colonization. We have focused here on the Kerguelen Archipelago, located within the sub-Antarctic area and compare the patterns with samples from other Southern Ocean islands. RESULTS: We have typed 18 autosomal and six Y-chromosomal microsatellite loci and obtained mitochondrial D-loop sequences for a total of 534 samples, mainly from the Kerguelen Archipelago, but also from the Falkland Islands, Marion Island, Amsterdam Island, Antipodes Island, Macquarie Island, Auckland Islands and one sample from South Georgia. We find that most of the mice on the Kerguelen Archipelago have the same mitochondrial haplotype and all share the same major Y-chromosomal haplotype. Two small islands (Cochons Island and Cimetière Island) within the archipelago show a different mitochondrial haplotype, are genetically distinct for autosomal loci, but share the major Y-chromosomal haplotype. In the mitochondrial D-loop sequences, we find several single step mutational derivatives of one of the major mitochondrial haplotypes, suggesting an unusually high mutation rate, or the occurrence of selective sweeps in mitochondria. CONCLUSIONS: Although there was heavy ship traffic for over a hundred years to the Kerguelen Archipelago, it appears that the mice that have arrived first have colonized the main island (Grande Terre) and most of the associated small islands. The second invasion that we see in our data has occurred on islands that are detached from Grande Terre and were likely to have had no resident mice prior to their arrival. The genetic data suggest that the mice of both primary invasions originated from related source populations. Our data suggest that an area colonized by mice is refractory to further introgression, possibly due to fast adaptations of the resident mice to local conditions.


Subject(s)
Geography , Animals , DNA, Mitochondrial/genetics , Europe , Genetics, Population , Haplotypes/genetics , Mice , Microsatellite Repeats/genetics , Phylogeny , Y Chromosome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...