Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Ann Intern Med ; 169(12): 866-872, 2018 12 18.
Article in English | MEDLINE | ID: mdl-30508424

ABSTRACT

Machine learning is used increasingly in clinical care to improve diagnosis, treatment selection, and health system efficiency. Because machine-learning models learn from historically collected data, populations that have experienced human and structural biases in the past-called protected groups-are vulnerable to harm by incorrect predictions or withholding of resources. This article describes how model design, biases in data, and the interactions of model predictions with clinicians and patients may exacerbate health care disparities. Rather than simply guarding against these harms passively, machine-learning systems should be used proactively to advance health equity. For that goal to be achieved, principles of distributive justice must be incorporated into model design, deployment, and evaluation. The article describes several technical implementations of distributive justice-specifically those that ensure equality in patient outcomes, performance, and resource allocation-and guides clinicians as to when they should prioritize each principle. Machine learning is providing increasingly sophisticated decision support and population-level monitoring, and it should encode principles of justice to ensure that models benefit all patients.


Subject(s)
Health Equity , Healthcare Disparities , Machine Learning , Critical Care , Health Care Rationing , Humans , Length of Stay , Machine Learning/standards , Patient Outcome Assessment , Social Justice
4.
NPJ Digit Med ; 1: 18, 2018.
Article in English | MEDLINE | ID: mdl-31304302

ABSTRACT

Predictive modeling with electronic health record (EHR) data is anticipated to drive personalized medicine and improve healthcare quality. Constructing predictive statistical models typically requires extraction of curated predictor variables from normalized EHR data, a labor-intensive process that discards the vast majority of information in each patient's record. We propose a representation of patients' entire raw EHR records based on the Fast Healthcare Interoperability Resources (FHIR) format. We demonstrate that deep learning methods using this representation are capable of accurately predicting multiple medical events from multiple centers without site-specific data harmonization. We validated our approach using de-identified EHR data from two US academic medical centers with 216,221 adult patients hospitalized for at least 24 h. In the sequential format we propose, this volume of EHR data unrolled into a total of 46,864,534,945 data points, including clinical notes. Deep learning models achieved high accuracy for tasks such as predicting: in-hospital mortality (area under the receiver operator curve [AUROC] across sites 0.93-0.94), 30-day unplanned readmission (AUROC 0.75-0.76), prolonged length of stay (AUROC 0.85-0.86), and all of a patient's final discharge diagnoses (frequency-weighted AUROC 0.90). These models outperformed traditional, clinically-used predictive models in all cases. We believe that this approach can be used to create accurate and scalable predictions for a variety of clinical scenarios. In a case study of a particular prediction, we demonstrate that neural networks can be used to identify relevant information from the patient's chart.

SELECTION OF CITATIONS
SEARCH DETAIL
...