Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 132(22): 224002, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38877904

ABSTRACT

Charge separation behind moving water drops occurs in nature and technology. Yet, the physical mechanism has remained obscure, as charge deposition is energetically unfavorable. Here, we analyze how a part of the electric double layer charge remains on the dewetted surface. At the contact line, the chemical equilibrium of bound surface charge and diffuse charge in the liquid is influenced by the contact angle and fluid flow. We summarize the mechanism in an analytical model that compares well with experiments and simulations. It correctly predicts that charge separation increases with increasing contact angle and decreases with increasing velocity.

2.
Soft Matter ; 20(17): 3641-3652, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38623003

ABSTRACT

Conical nanochannels employed to create ionic current rectification (ICR) in nanofluidic devices are prone to clogging due to the contraction at one end. As an alternative approach for creating ICR, a cylindrical nanochannel covered with a polyelectrolyte layer (PEL) of variable thickness is proposed in the present study. The efficacy of the proposed design is studied by numerically solving the governing equations including the Poisson, Nernst-Planck, and Stokes-Brinkman equations. Furthermore, the fundamental mechanism behind ICR is explained using a simplified one-dimensional model. The effects of the nanochannel radius, concentration of PEL fixed charges, and bulk ionic concentration on the rectification factor are then investigated in detail. It is shown that the proposed nanochannel provides larger rectification factors as compared to conical nanochannels over wide ranges of the fixed charge concentration and bulk ionic concentration. Such a performance can be achieved even at channel radii much larger than the tip radius of conical nanochannels, indicating not only the better performance of the proposed nanochannel but also its likely longer service life, because of reducing the probability of total ionic current blockage. This means that the proposed nanochannel could find widespread use in fluidic devices, as a replacement for conical nanofluidic diodes.

3.
J Phys Chem Lett ; 15(15): 4151-4157, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38597408

ABSTRACT

The ability to control the location of nanoscale objects in liquids is essential for fundamental and applied research from nanofluidics to molecular biology. To overcome their random Brownian motion, the electrostatic fluid trap creates local minima in potential energy by shaping electrostatic interactions with a tailored wall topography. However, this strategy is inherently static; once fabricated, the potential wells cannot be modulated. Here, we propose and experimentally demonstrate that such a trap can be controlled through a buried gate electrode. We measure changes in the average escape times of nanoparticles from the traps to quantify the induced modulations of 0.7 kBT in potential energy and 50 mV in surface potential. Finally, we summarize the mechanism in a parameter-free predictive model, including surface chemistry and electrostatic fringing, that reproduces the experimental results. Our findings open a route toward real-time controllable nanoparticle traps.

4.
Nat Commun ; 15(1): 3202, 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38615087

ABSTRACT

Dye-sensitized photoelectrodes consisting of photosensitizers and molecular catalysts with tunable structures and adjustable energy levels are attractive for low-cost and eco-friendly solar-assisted synthesis of energy rich products. Despite these advantages, dye-sensitized NiO photocathodes suffer from severe electron-hole recombination and facile molecule detachment, limiting photocurrent and stability in photoelectrochemical water-splitting devices. In this work, we develop an efficient and robust biohybrid dye-sensitized NiO photocathode, in which the intermolecular charge transfer is enhanced by a redox polymer. Owing to efficient assisted electron transfer from the dye to the catalyst, the biohybrid NiO photocathode showed a satisfactory photocurrent of 141±17 µA·cm-2 at neutral pH at 0 V versus reversible hydrogen electrode and a stable continuous output within 5 h. This photocathode is capable of driving overall water splitting in combination with a bismuth vanadate photoanode, showing distinguished solar-to-hydrogen efficiency among all reported water-splitting devices based on dye-sensitized photocathodes. These findings demonstrate the opportunity of building green biohybrid systems for artificial synthesis of solar fuels.

5.
Phys Rev Lett ; 132(9): 098001, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38489648

ABSTRACT

The thermoelectric response of thermally activated electrolytes (TAEs) in a slit channel is studied theoretically and by numerical simulations. The term TAE refers to electrolytes whose charge carrier concentration is a function of temperature, as recently suggested for ionic liquids and highly concentrated aqueous electrolyte solutions. Two competing mechanisms driving charge transport by temperature gradients are identified. For suitable values of the activation energy that governs the generation of charge carriers, a giant thermoelectric response is found, which could help explain recent experimental results for nanoporous media infiltrated with TAEs.

6.
Anal Chem ; 96(11): 4446-4454, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38451777

ABSTRACT

Microfluidic isotachophoresis (ITP) is a powerful technique that can significantly increase the reaction rate of homogeneous chemical reactions by cofocusing reactants in a narrow sample zone. Correspondingly, ITP has been utilized to reduce the reaction time in various bioanalytical assays. However, in conventional ITP, it is hardly possible to control the reaction rate in real time, i.e., speeding up or slowing down a reaction on demand. Here, we experimentally demonstrate a new mode of ITP that allows the spatial overlap of two ITP zones to be precisely controlled over time, which is a crucial first step toward controlling reaction rates. Two nonreactive samples are initially focused and separated by a spacer using a DC electric field. By superimposing an oscillating field component with sufficiently high amplitude on the DC field, the spatial overlap of their concentration profiles is temporarily increased due to electromigration dispersion. The time-average of this overlap can be precisely controlled by varying the frequency and amplitude of the oscillation. We suggest that this scheme can be transferred to chemical reactions between ionic species with sufficiently different electrophoretic mobilities. Tuning the parameters of the oscillatory electric field should allow direct control of the corresponding reaction rate.

7.
Phys Rev Lett ; 131(22): 228201, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38101382

ABSTRACT

Slide electrification-the spontaneous charge separation by sliding aqueous drops-can lead to an electrostatic potential in the order of 1 kV and change drop motion substantially. To find out how slide electrification influences the contact angles of moving drops, we analyzed the dynamic contact angles of aqueous drops sliding down tilted plates with insulated surfaces, grounded surfaces, and while grounding the drop. The observed decrease in dynamic contact angles at different salt concentrations is attributed to two effects: An electrocapillary reduction of contact angles caused by drop charging and a change in the free surface energy of the solid due to surface charging.

8.
Anal Chem ; 95(19): 7575-7583, 2023 May 16.
Article in English | MEDLINE | ID: mdl-37133530

ABSTRACT

Lowering the limit of detection in chemical or biochemical analysis is key to extending the application scope of sensing schemes. Usually, this is related to an increased instrumentation effort, which in turn precludes many commercial applications. We demonstrate that the signal-to-noise ratio of isotachophoresis-based microfluidic sensing schemes can be substantially increased merely by postprocessing of recorded signals. This becomes possible by exploiting knowledge about the physics of the underlying measurement process. The implementation of our method is based on microfluidic isotachophoresis and fluorescence detection, for which we take advantage of the physics of electrophoretic sample transport and the structure of noise in the imaging process. We demonstrate that by processing only 200 images, the detectable concentration, compared to the detection from a single image, is already lowered by 2 orders of magnitude without any additional instrumentation effort. Furthermore, we show that the signal-to-noise ratio is proportional to the square root of the number of fluorescence images, which leaves room for further lowering of the detection limit. In the future, our results could be relevant for various applications where the detection of minute sample amounts plays a role.

9.
Soft Matter ; 18(34): 6313-6317, 2022 Aug 31.
Article in English | MEDLINE | ID: mdl-35993409

ABSTRACT

The phase transition and phase distribution in an all-aqueous sessile drop containing polyethylene glycol (PEG) and dextran is studied. Evaporation of water triggers the formation of dextran-rich droplets close to the contact line of the drop that subsequently migrate towards the drop center. The likely reason for the droplet migration is Marangoni convection due to stresses at the interface between the dextran-rich droplets and the surrounding liquid.

10.
Nat Commun ; 13(1): 289, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-35022399

ABSTRACT

A method to manipulate and control droplets on a surface is presented. The method is based on inducing electric dipoles inside the droplets using a homogeneous external electric field. It is shown that the repulsive dipole force efficiently suppresses the coalescence of droplets moving on a liquid-infused surface (LIS). Using a combination of experiments, numerical computations and semi-analytical models, the dependence of the repulsion force on the droplet volumes, the distance between the droplets and the electric field strength is revealed. The method allows to suppress coalescence in complex multi-droplet flows and is real-time adaptive. When the electric field strength exceeds a critical value, tip streaming from the droplets sets in. Based on that, it becomes possible to withdraw minute samples from an array of droplets in a parallel process.

11.
Phys Rev Lett ; 129(26): 264501, 2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36608199

ABSTRACT

Inducing transport in electrolyte-filled nanopores with dc fields has led to influential applications ranging from nanosensors to DNA sequencing. Here we use the Poisson-Nernst-Planck and Navier-Stokes equations to show that unbiased ac fields can induce comparable directional flows in gated conical nanopores. This flow exclusively occurs at intermediate driving frequencies and hinges on the resonance of two competing timescales, representing space charge development at the ends and in the interior of the pore. We summarize the physics of resonant nanopumping in an analytical model that reproduces the results of numerical simulations. Our findings provide a generic route toward real-time controllable flow patterns, which might find applications in controlling the translocation of small molecules or nanocolloids.


Subject(s)
Nanopores , Electrolytes
12.
Adv Mater ; 33(23): e2100117, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33955580

ABSTRACT

Liquids are traditionally handled and stored in solid vessels. Solid walls are not functional, adaptive, or self-repairing, and are difficult to remove and re-form. Liquid walls can overcome these limitations, but cannot form free-standing 3D walls. Herein, a liquid analogue of a well, termed a "liquid well" is introduced. Water tethered to a surface with hydrophobic-hydrophilic core-shell patterns forms stable liquid walls capable of containing another immiscible fluid, similar to fluid confinement by solid walls. Liquid wells with different liquids, volumes, and shapes are prepared and investigated by confocal and Raman microscopy. The confinement of various low-surface-tension liquids (LSTLs) on surfaces by liquid wells can compete with or be complementary to existing confinement strategies using perfluorinated surfaces, for example, in terms of the shape and height of the confined LSTLs. Liquid wells show unique properties arising from their liquid aggregate state: they are self-healing, dynamic, and functional, that is, not restricted to a passive confining role. Water walls can be easily removed and re-formed, making them interesting as sacrificial templates. This is demonstrated in a process termed water-templated polymerization (WTP). Numerical phase-field model simulations are performed to scrutinize the conditions required for the formation of stable liquid wells.

13.
Phys Rev Lett ; 126(18): 184502, 2021 May 07.
Article in English | MEDLINE | ID: mdl-34018770

ABSTRACT

We demonstrate theoretically and experimentally that injection of momentum in a region surrounding an object in microscale flow can yield both "cloaking" conditions, where the flow field outside the cloaking region is unaffected by the object, and "shielding" conditions, where the hydrodynamic forces on the object are eliminated. Using field-effect electro-osmosis as a mechanism for injection of momentum, we present a theoretical framework and analytical solutions for a range of geometrical shapes, validate these both numerically and experimentally, and demonstrate the ability to dynamically switch between the different states.

14.
Nat Catal ; 4(3): 251-258, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33842839

ABSTRACT

Efficient electrocatalytic energy conversion requires the devices to function reversibly, i.e. deliver a significant current at minimal overpotential. Redox-active films can effectively embed and stabilise molecular electrocatalysts, but mediated electron transfer through the film typically makes the catalytic response irreversible. Here, we describe a redox-active film for bidirectional (oxidation or reduction) and reversible hydrogen conversion, consisting of [FeFe] hydrogenase embedded in a low-potential, 2,2'-viologen modified hydrogel. When this catalytic film served as the anode material in a H2/O2 biofuel cell, an open circuit voltage of 1.16 V was obtained - a benchmark value near the thermodynamic limit. The same film also acted as a highly energy efficient cathode material for H2 evolution. We explained the catalytic properties using a kinetic model, which shows that reversibility can be achieved despite intermolecular electron transfer being slower than catalysis. This understanding of reversibility simplifies the design principles of highly efficient and stable bioelectrocatalytic films, advancing their implementation in energy conversion.

15.
Soft Matter ; 17(14): 3929-3936, 2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33720237

ABSTRACT

The electric-field driven transport of proteins across the liquid-liquid interface in an aqueous two-phase system (ATPS) is studied in a microfluidic device using fluorescence microscopy. An ATPS containing polyethylene glycol (PEG) and dextran is employed, and bovine serum albumin (BSA) and bovine γ-globulins (BγG) are considered as model proteins. It is shown that both proteins, initially in the dextran-rich phase, accumulate at the liquid-liquid interface, preferably close to the three-phase contact line between the two liquid phases and the microchannel wall. It is in these regions where the proteins penetrate into the PEG-rich phase. The transport resistance of the liquid-liquid interface is higher for BγG than for BSA, such that a much larger molar flux of BSA into the PEG phase is observed. This opens up the opportunity of separating different protein species by utilizing differences in the transport resistance at the interface. A mathematical model is developed, accounting for adsorption and desorption processes at the liquid-liquid interface. The underlying theoretical concept is that of an electrostatic potential minimum formed by superposing the applied electric field and the field due to the Donnan potential at the interface. A fit of the model parameters to the experimental data results in good agreement between theory and experiments, thereby corroborating the underlying picture.


Subject(s)
Polyethylene Glycols , Water , Adsorption , Serum Albumin, Bovine , Static Electricity
16.
Chem Commun (Camb) ; 57(14): 1750-1753, 2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33469641

ABSTRACT

We demonstrate that the insertion of the dinuclear active site of [FeFe] hydrogenase into the apo-enzyme can occur when the enzyme is embedded in a film of redox polymer, under conditions of mediated electron transfer. The maturation can be monitored by electrochemistry, and is as fast as under conditions of direct electron transfer. This new approach further clears the way to the implementation of hydrogenases in large scale real life processes.


Subject(s)
Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Hydrogenase/chemistry , Hydrogenase/metabolism , Iron-Sulfur Proteins/chemistry , Iron-Sulfur Proteins/metabolism , Membranes, Artificial , Polymers/chemistry
17.
Soft Matter ; 17(7): 1756-1772, 2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33393559

ABSTRACT

In this paper, we systematically investigate the static wetting behavior of a liquid ring in a cylindrical capillary tube. We obtain analytical solutions of the axisymmetric Young-Laplace equation for arbitrary contact angles. We find that, for specific values of the contact angle and the volume of the liquid ring, two solutions of the Young-Laplace equation exist, but only the one with the lower value of the total interfacial energy corresponds to a stable configuration. Based on a numerical scheme determining configurations with a local minimum of the interfacial energy, we also discuss the stability limit between axisymmetric rings and non-axisymmetric configurations. Beyond the stable regime, a liquid plug or a sessile droplet exists instead of a liquid ring, depending on the values of the liquid volume and the contact angle. The stability limit is characterized by specific critical parameters such as the liquid volume, throat diameter, etc. The results are presented in terms of a map showing the different stable liquid morphologies that are obtained from an axisymmetric ring as base state.

18.
Chem Commun (Camb) ; 56(69): 9958-9961, 2020 Sep 07.
Article in English | MEDLINE | ID: mdl-32789390

ABSTRACT

[FeFe] hydrogenases are highly active hydrogen conversion catalysts but are notoriously sensitive to oxidative damage. Redox hydrogels have been used for protecting hydrogenases from both high potential inactivation and oxygen inactivation under turnover conditions. However, [FeFe] hydrogenase containing redox hydrogels must be fabricated under strict anoxic conditions. Sulfide coordination at the active center of the [FeFe] hydrogenase from Desulfovibrio desulfuricans protects this enzyme from oxygen in an inactive state, which can be reactivated upon reduction. Here, we show that this oxygen-stable inactive form of the hydrogenase can be reactivated in a redox hydrogel enabling practical use of this highly O2 sensitive enzyme without the need for anoxic conditions.


Subject(s)
Hydrogels/chemistry , Hydrogenase/metabolism , Sulfides/chemistry , Biocatalysis , Desulfovibrio desulfuricans/enzymology , Enzyme Stability , Hydrogenase/chemistry , Oxidation-Reduction , Oxygen/chemistry
19.
Langmuir ; 36(20): 5517-5523, 2020 May 26.
Article in English | MEDLINE | ID: mdl-32337996

ABSTRACT

Wetting transition on superhydrophobic surfaces is commonly described as an abrupt jump between two stable states-either from Cassie to Wenzel for nonhierarchical surfaces or from Cassie to nano-Cassie on hierarchical surfaces. We here experimentally study the electrowetting of hierarchical superhydrophobic surfaces composed of multiple length scales by imaging the light reflections from the gas-liquid interface. We present the existence of a continuous set of intermediate states of wetting through which the gas-liquid interface transitions under a continuously increasing external forcing. This transition is partially reversible and is limited only by localized Cassie to Wenzel transitions at nanodefects in the structure. In addition, we show that even a surface containing many localized wetted regions can still exhibit extremely low contact angle hysteresis, thus remaining useful for many heat transfer and self-cleaning applications. Expanding the classical definition of the Cassie state in the context of hierarchical surfaces, from a single state to a continuum of metastable states ranging from the centimeter to the nanometer scale, is important for a better description of the slip properties of superhydrophobic surfaces and provides new considerations for their effective design.

20.
Phys Rev Lett ; 124(6): 064501, 2020 Feb 14.
Article in English | MEDLINE | ID: mdl-32109117

ABSTRACT

The concentration patterns of DNA molecules attached to the interface between two immiscible aqueous phases forming under an electric field are studied. The pattern formation is driven by hydrodynamic interactions between the molecules originating from the electro-osmotic flow due to the Debye layer around a molecule. A nonlinear integrodifferential equation is derived describing the time evolution of the concentration field at the liquid-liquid interface. A linear stability analysis of this equation shows that a mode of given wavelength is initially stable, but destabilizes after a critical time which is inversely proportional to the wavelength. The scaling behavior of the critical time with electric field strength and viscosity found in the experiments agrees with the predictions by the theoretical model.


Subject(s)
DNA/chemistry , Models, Chemical , Electromagnetic Fields , Hydrodynamics , Osmotic Pressure , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...