Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Physiol ; 9: 205, 2018.
Article in English | MEDLINE | ID: mdl-29593564

ABSTRACT

We investigated the steepened dynamic action potential duration (APD) restitution of rats with pulmonary artery hypertension (PAH) and right ventricular (RV) failure and tested whether the observed APD restitution properties were responsible for negative mechanical restitution in these myocytes. PAH and RV failure were provoked in male Wistar rats by a single injection of monocrotaline (MCT) and compared with saline-injected animals (CON). Action potentials were recorded from isolated RV myocytes at stimulation frequencies between 1 and 9 Hz. Action potential waveforms recorded at 1 Hz were used as voltage clamp profiles (action potential clamp) at stimulation frequencies between 1 and 7 Hz to evoke rate-dependent currents. Voltage clamp profiles mimicking typical CON and MCT APD restitution were applied and cell shortening simultaneously monitored. Compared with CON myocytes, MCT myocytes were hypertrophied; had less polarized diastolic membrane potentials; had action potentials that were triggered by decreased positive current density and shortened by decreased negative current density; APD was longer and APD restitution steeper. APD90 restitution was unchanged by exposure to the late Na+-channel blocker (5 µM) ranolazine or the intracellular Ca2+ buffer BAPTA. Under AP clamp, stimulation frequency-dependent inward currents were smaller in MCT myocytes and were abolished by BAPTA. In MCT myocytes, increasing stimulation frequency decreased contraction amplitude when depolarization duration was shortened, to mimic APD restitution, but not when depolarization duration was maintained. We present new evidence that the membrane potential of PAH myocytes is less stable than normal myocytes, being more easily perturbed by external currents. These observations can explain increased susceptibility to arrhythmias. We also present novel evidence that negative APD restitution is at least in part responsible for the negative mechanical restitution in PAH myocytes. Thus, our study links electrical restitution remodeling to a defining mechanical characteristic of heart failure, the reduced ability to respond to an increase in demand.

2.
FASEB J ; 31(11): 4845-4854, 2017 11.
Article in English | MEDLINE | ID: mdl-28743763

ABSTRACT

Exposure to CO causes early afterdepolarization arrhythmias. Previous studies in rats have indicated that arrhythmias arose as a result of augmentation of the late Na+ current. The purpose of the present study was to examine the basis for CO-induced arrhythmias in guinea pig myocytes in which action potentials (APs) more closely resemble those of human myocytes. Whole-cell current- and voltage-clamp recordings were made from isolated guinea pig myocytes as well as from human embryonic kidney 293 (HEK293) cells that express wild-type or a C723S mutant form of ether-a-go-go-related gene (ERG; Kv11.1). We also monitored the formation of peroxynitrite (ONOO-) in HEK293 cells fluorimetrically. CO-applied as the CO-releasing molecule, CORM-2-prolonged the APs and induced early afterdepolarizations in guinea pig myocytes. In HEK293 cells, CO inhibited wild-type, but not C723S mutant, Kv11.1 K+ currents. Inhibition was prevented by an antioxidant, mitochondrial inhibitors, or inhibition of NO formation. CO also raised ONOO- levels, an effect that was reversed by the ONOO- scavenger, FeTPPS [5,10,15,20-tetrakis-(4-sulfonatophenyl)-porphyrinato-iron(III)], which also prevented the CO inhibition of Kv11.1 currents and abolished the effects of CO on Kv11.1 tail currents and APs in guinea pig myocytes. Our data suggest that CO induces arrhythmias in guinea pig cardiac myocytes via the ONOO--mediated inhibition of Kv11.1 K+ channels.-Al-Owais, M. M., Hettiarachchi, N. T., Kirton, H. M., Hardy, M. E., Boyle, J. P., Scragg, J. L., Steele, D. S., Peers, C. A key role for peroxynitrite-mediated inhibition of cardiac ERG (Kv11.1) K+ channels in carbon monoxide-induced proarrhythmic early afterdepolarizations.


Subject(s)
Arrhythmias, Cardiac/metabolism , Carbon Monoxide/toxicity , ERG1 Potassium Channel/metabolism , Membrane Potentials/drug effects , Myocytes, Cardiac/metabolism , Peroxynitrous Acid/metabolism , Animals , Arrhythmias, Cardiac/chemically induced , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/pathology , ERG1 Potassium Channel/genetics , Guinea Pigs , HEK293 Cells , Humans , Metalloporphyrins/pharmacology , Myocytes, Cardiac/pathology , Nitric Oxide/genetics , Nitric Oxide/metabolism , Organometallic Compounds/pharmacology , Peroxynitrous Acid/genetics
3.
Sci Signal ; 8(398): ra101, 2015 Oct 13.
Article in English | MEDLINE | ID: mdl-26462734

ABSTRACT

Ca(2+) release from the Golgi apparatus regulates key functions of the organelle, including vesicle trafficking. We found that the Golgi apparatus was the source of prolonged Ca(2+) release events that originated near the nuclei of primary cardiomyocytes. Golgi Ca(2+) release was unaffected by depletion of sarcoplasmic reticulum Ca(2+), and disruption of the Golgi apparatus abolished Golgi Ca(2+) release without affecting sarcoplasmic reticulum function, suggesting functional and spatial independence of Golgi and sarcoplasmic reticulum Ca(2+) stores. ß1-Adrenoceptor stimulation triggers the production of the second messenger cAMP, which activates the Epac family of Rap guanine nucleotide exchange factors and the kinase PKA (protein kinase A). Phosphodiesterases (PDEs), including those in the PDE3 and PDE4 families, degrade cAMP. Activation of ß1-adrenoceptors stimulated Golgi Ca(2+) release, an effect that required activation of Epac, PKA, and the kinase CaMKII. Inhibition of PDE3s or PDE4s potentiated ß1-adrenergic-induced Golgi Ca(2+) release, which is consistent with compartmentalization of cAMP signaling near the Golgi apparatus. Interventions that stimulated Golgi Ca(2+) release appeared to increase the trafficking of vascular endothelial growth factor receptor-1 (VEGFR-1) from the Golgi apparatus to the surface membrane of cardiomyocytes. In cardiomyocytes from rats with heart failure, decreases in the abundance of PDE3s and PDE4s were associated with increased Golgi Ca(2+) release events. These data suggest that the Golgi apparatus is a focal point for ß1-adrenergic-stimulated Ca(2+) signaling and that the Golgi Ca(2+) store functions independently from the sarcoplasmic reticulum and the global Ca(2+) transients that trigger contraction in cardiomyocytes.


Subject(s)
Calcium/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Golgi Apparatus/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Receptors, Adrenergic, beta-1/metabolism , Signal Transduction , Adrenergic beta-Agonists/pharmacology , Animals , Cells, Cultured , Cyclic AMP/metabolism , Enzyme Inhibitors/pharmacology , Golgi Apparatus/ultrastructure , Heart Failure/chemically induced , Heart Failure/metabolism , Immunoblotting , Isoproterenol/pharmacology , Male , Microscopy, Confocal , Microscopy, Electron , Monocrotaline , Myocytes, Cardiac/cytology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Phosphoric Diester Hydrolases/metabolism , Rats, Wistar , Sarcoplasmic Reticulum/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/antagonists & inhibitors , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Thapsigargin/pharmacology
4.
Prog Biophys Mol Biol ; 115(2-3): 162-72, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25016242

ABSTRACT

We demonstrate the synergistic benefits of using multiple technologies to investigate complex multi-scale biological responses. The combination of reductionist and integrative methodologies can reveal novel insights into mechanisms of action by tracking changes of in vivo phenomena to alterations in protein activity (or vice versa). We have applied this approach to electrical and mechanical remodelling in right ventricular failure caused by monocrotaline-induced pulmonary artery hypertension in rats. We show arrhythmogenic T-wave alternans in the ECG of conscious heart failure animals. Optical mapping of isolated hearts revealed discordant action potential duration (APD) alternans. Potential causes of the arrhythmic substrate; structural remodelling and/or steep APD restitution and dispersion were observed, with specific remodelling of the Right Ventricular Outflow Tract. At the myocyte level, [Ca(2+)]i transient alternans were observed together with decreased activity, gene and protein expression of the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA). Computer simulations of the electrical and structural remodelling suggest both contribute to a less stable substrate. Echocardiography was used to estimate increased wall stress in failure, in vivo. Stretch of intact and skinned single myocytes revealed no effect on the Frank-Starling mechanism in failing myocytes. In isolated hearts acute stretch-induced arrhythmias occurred in all preparations. Significant shortening of the early APD was seen in control but not failing hearts. These observations may be linked to changes in the gene expression of candidate mechanosensitive ion channels (MSCs) TREK-1 and TRPC1/6. Computer simulations incorporating MSCs and changes in ion channels with failure, based on altered gene expression, largely reproduced experimental observations.


Subject(s)
Arrhythmias, Cardiac/physiopathology , Excitation Contraction Coupling , Heart Conduction System/physiopathology , Hypertension, Pulmonary/physiopathology , Mechanotransduction, Cellular , Ventricular Dysfunction, Right/physiopathology , Animals , Arrhythmias, Cardiac/chemically induced , Elastic Modulus , Heart Conduction System/drug effects , Hypertension, Pulmonary/chemically induced , Ion Channel Gating , Ion Channels/metabolism , Monocrotaline , Physical Stimulation/methods , Rats , Rats, Wistar , Stress, Mechanical , Systems Biology/methods , Ventricular Dysfunction, Right/chemically induced , Ventricular Remodeling
5.
Front Physiol ; 4: 281, 2013.
Article in English | MEDLINE | ID: mdl-24115934

ABSTRACT

Spatial dispersion of repolarization is known to play an important role in arrhythmogenesis. Electrotonic modulation of repolarization by the activation sequence has been observed in some species and tissue preparations, but to varying extents. Our study sought to determine the mechanisms underlying species- and tissue-dependent electrotonic modulation of repolarization in ventricles. Epi-fluorescence optical imaging of whole rat hearts and pig left ventricular wedges were used to assess epicardial spatial activation and repolarization characteristics. Experiments were supported by computer simulations using realistic geometries. Tight coupling between activation times (AT) and action potential duration (APD) were observed in rat experiments but not in pig. Linear correlation analysis found slopes of -1.03 ± 0.59 and -0.26 ± 0.13 for rat and pig, respectively (p < 0.0001). In rat, maximal dispersion of APD was 11.0 ± 3.1 ms but dispersion of repolarization time (RT) was relatively homogeneous (8.2 ± 2.7, p < 0.0001). However, in pig no such difference was observed between the dispersion of APD and RT (17.8 ± 6.1 vs. 17.7 ± 6.5, respectively). Localized elevations of APD (12.9 ± 8.3%) were identified at ventricular insertion sites of rat hearts both in experiments and simulations. Tissue geometry and action potential (AP) morphology contributed significantly to determining influence of electrotonic modulation. Simulations of a rat AP in a pig geometry decreased the slope of AT and APD relationships by 70.6% whereas slopes were increased by 75.0% when implementing a pig AP in a rat geometry. A modified pig AP, shortened to match the rat APD, showed little coupling between AT and APD with greatly reduced slope compared to the rat AP. Electrotonic modulation of repolarization by the activation sequence is especially pronounced in small hearts with murine-like APs. Tissue architecture and AP morphology play an important role in electrotonic modulation of repolarization.

6.
PLoS One ; 8(12): e85630, 2013.
Article in English | MEDLINE | ID: mdl-24392021

ABSTRACT

The hERG potassium channel is critical for repolarisation of the cardiac action potential. Reduced expression of hERG at the plasma membrane, whether caused by hereditary mutations or drugs, results in long QT syndrome and increases the risk of ventricular arrhythmias. Thus, it is of fundamental importance to understand how the density of this channel at the plasma membrane is regulated. We used antibodies to an extracellular native or engineered epitope, in conjunction with immunofluorescence and ELISA, to investigate the mechanism of hERG endocytosis in recombinant cells and validated the findings in rat neonatal cardiac myocytes. The data reveal that this channel undergoes rapid internalisation, which is inhibited by neither dynasore, an inhibitor of dynamin, nor a dominant negative construct of Rab5a, into endosomes that are largely devoid of the transferrin receptor. These results support a clathrin-independent mechanism of endocytosis and exclude involvement of dynamin-dependent caveolin and RhoA mechanisms. In agreement, internalised hERG displayed marked overlap with glycosylphosphatidylinositol-anchored GFP, a clathrin-independent cargo. Endocytosis was significantly affected by cholesterol extraction with methyl-ß-cyclodextrin and inhibition of Arf6 function with dominant negative Arf6-T27N-eGFP. Taken together, we conclude that hERG undergoes clathrin-independent endocytosis via a mechanism involving Arf6.


Subject(s)
ADP-Ribosylation Factors/metabolism , Endocytosis , Ether-A-Go-Go Potassium Channels/metabolism , ADP-Ribosylation Factor 6 , Animals , Cell Membrane/metabolism , Cholesterol/metabolism , Clathrin/metabolism , Dynamins/metabolism , ERG1 Potassium Channel , HeLa Cells , Heart Ventricles/cytology , Humans , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Rats , Rats, Wistar
7.
J Pharmacol Toxicol Methods ; 60(1): 94-106, 2009.
Article in English | MEDLINE | ID: mdl-19414070

ABSTRACT

INTRODUCTION: Evaluation of drug candidates in in-vitro assays of action potential duration (APD) is one component of preclinical safety assessment. Current assays are limited by technically-demanding, time-consuming electrophysiological methods. This study aimed to assess whether a voltage-sensitive dye-based assay could be used instead. METHODS: Optical APs were recorded using di-4-ANEPPS in electrically field stimulated beagle left ventricular midmyocardial myocytes (LVMMs). Pharmacological properties of di-4-ANEPPS on the main cardiac ion channels that shape the ventricular AP were investigated using IonWorks and conventional electrophysiology. Effects of 9 reference drugs (dofetilide, E4031, D-sotalol, ATXII, cisapride, terfenadine, alfuzosin, diltiazem and pinacidil) with known APD-modulating effects were assessed on optically measured APD at 1 Hz. RESULTS: Under optimum conditions, 0.1 microM di-4-ANEPPS could be used to monitor APs paced at 1 Hz during nine, 5 s exposures without altering APD. di-4-ANEPPS had no effect on either hI(ERG), hI(Na), hI(Ks) and hI(to) currents in transfected CHO cells (up to 10 microM) or I(Ca,L) current in LVMMs (at 16 microM). di-4-ANEPPS had no effect on APs recorded with microelectrodes at 1 or 0.5 Hz over a period of 30 min di-4-ANEPPS displayed the sensitivity to record changes in optically measured APD in response to altered pacing frequencies and sequential vehicle additions did not affect the optically measured APD. APD data obtained with 9 reference drugs were as expected except (i) D-sotalol-induced increases in duration were smaller than those caused by other I(Kr) blockers and (ii) increases in APD were not detected using low concentrations of terfenadine. DISCUSSION: Early in drug discovery, the di-4-ANEPPS-based method can reliably be used to assess drug effects on APD as part of a cardiac risk assessment strategy.


Subject(s)
Action Potentials/drug effects , Drug-Related Side Effects and Adverse Reactions , Fluorescent Dyes , Myocytes, Cardiac/drug effects , Pyridinium Compounds , Animals , CHO Cells , Cricetinae , Cricetulus , Disease Models, Animal , Dogs , Dose-Response Relationship, Drug , Drug Discovery , Electric Stimulation , Electrophysiology , Female , Fluorescent Dyes/pharmacology , Heart Ventricles/cytology , In Vitro Techniques , Ion Channels/physiology , Myocardial Contraction/drug effects , Myocytes, Cardiac/physiology , Pyridinium Compounds/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...