Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 117(29): 17195-17203, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32606248

ABSTRACT

The vast majority of intracellular protein targets are refractory toward small-molecule therapeutic engagement, and additional therapeutic modalities are needed to overcome this deficiency. Here, the identification and characterization of a natural product, WDB002, reveals a therapeutic modality that dramatically expands the currently accepted limits of druggability. WDB002, in complex with the FK506-binding protein (FKBP12), potently and selectively binds the human centrosomal protein 250 (CEP250), resulting in disruption of CEP250 function in cells. The recognition mode is unprecedented in that the targeted domain of CEP250 is a coiled coil and is topologically featureless, embodying both a structural motif and surface topology previously considered on the extreme limits of "undruggability" for an intracellular target. Structural studies reveal extensive protein-WDB002 and protein-protein contacts, with the latter being distinct from those seen in FKBP12 ternary complexes formed by FK506 and rapamycin. Outward-facing structural changes in a bound small molecule can thus reprogram FKBP12 to engage diverse, otherwise "undruggable" targets. The flat-targeting modality demonstrated here has the potential to expand the druggable target range of small-molecule therapeutics. As CEP250 was recently found to be an interaction partner with the Nsp13 protein of the SARS-CoV-2 virus that causes COVID-19 disease, it is possible that WDB002 or an analog may exert useful antiviral activity through its ability to form high-affinity ternary complexes containing CEP250 and FKBP12.


Subject(s)
Actinobacteria/genetics , Antiviral Agents/pharmacology , Genome, Bacterial , Macrolides/pharmacology , Protein Interaction Domains and Motifs/drug effects , Small Molecule Libraries/pharmacology , Tacrolimus Binding Protein 1A/chemistry , Tacrolimus Binding Protein 1A/metabolism , Actinobacteria/metabolism , Amino Acid Sequence , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Autoantigens/genetics , Autoantigens/metabolism , Calcineurin/genetics , Calcineurin/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Evolution, Molecular , HEK293 Cells , Humans , Macrolides/chemistry , Macrolides/metabolism , Models, Molecular , Protein Conformation , Sequence Homology , Sirolimus/chemistry , Sirolimus/metabolism , Small Molecule Libraries/chemistry , Small Molecule Libraries/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
2.
J Cell Sci ; 127(Pt 11): 2493-506, 2014 Jun 01.
Article in English | MEDLINE | ID: mdl-24695856

ABSTRACT

During mitotic entry, centrosomes separate to establish the bipolar spindle. Delays in centrosome separation can perturb chromosome segregation and promote genetic instability. However, interphase centrosomes are physically tethered by a proteinaceous linker composed of C-Nap1 (also known as CEP250) and the filamentous protein rootletin. Linker disassembly occurs at the onset of mitosis in a process known as centrosome disjunction and is triggered by the Nek2-dependent phosphorylation of C-Nap1. However, the mechanistic consequences of C-Nap1 phosphorylation are unknown. Here, we demonstrate that Nek2 phosphorylates multiple residues within the C-terminal domain of C-Nap1 and, collectively, these phosphorylation events lead to loss of oligomerization and centrosome association. Mutations in non-phosphorylatable residues that make the domain more acidic are sufficient to release C-Nap1 from the centrosome, suggesting that it is an increase in overall negative charge that is required for this process. Importantly, phosphorylation of C-Nap1 also perturbs interaction with the core centriolar protein, Cep135, and interaction of endogenous C-Nap1 and Cep135 proteins is specifically lost in mitosis. We therefore propose that multisite phosphorylation of C-Nap1 by Nek2 perturbs both oligomerization and Cep135 interaction, and this precipitates centrosome disjunction at the onset of mitosis.


Subject(s)
Autoantigens/metabolism , Carrier Proteins/metabolism , Cell Cycle Proteins/metabolism , Centrioles/metabolism , Centrosome/physiology , Spindle Apparatus/metabolism , Autoantigens/genetics , Cell Cycle Proteins/genetics , Chromosome Segregation/genetics , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Genomic Instability , HeLa Cells , Humans , Mitosis , Mutation/genetics , NIMA-Related Kinases , Phosphorylation , Protein Binding/genetics , Protein Engineering , Protein Serine-Threonine Kinases/metabolism , RNA, Small Interfering/genetics
3.
J Med Chem ; 55(7): 3228-41, 2012 Apr 12.
Article in English | MEDLINE | ID: mdl-22404346
4.
J Biol Chem ; 286(31): 27537-47, 2011 Aug 05.
Article in English | MEDLINE | ID: mdl-21669869

ABSTRACT

Leucine zippers are oligomerization domains used in a wide range of proteins. Their structure is based on a highly conserved heptad repeat sequence in which two key positions are occupied by leucines. The leucine zipper of the cell cycle-regulated Nek2 kinase is important for its dimerization and activation. However, the sequence of this leucine zipper is most unusual in that leucines occupy only one of the two hydrophobic positions. The other position, depending on the register of the heptad repeat, is occupied by either acidic or basic residues. Using NMR spectroscopy, we show that this leucine zipper exists in two conformations of almost equal population that exchange with a rate of 17 s(-1). We propose that the two conformations correspond to the two possible registers of the heptad repeat. This hypothesis is supported by a cysteine mutant that locks the protein in one of the two conformations. NMR spectra of this mutant showed the predicted 2-fold reduction of peaks in the (15)N HSQC spectrum and the complete removal of cross peaks in exchange spectra. It is possible that interconversion of these two conformations may be triggered by external signals in a manner similar to that proposed recently for the microtubule binding domain of dynein and the HAMP domain. As a result, the leucine zipper of Nek2 kinase is the first example where the frameshift of coiled-coil heptad repeats has been directly observed experimentally.


Subject(s)
Leucine Zippers , Protein Serine-Threonine Kinases/chemistry , Base Sequence , Circular Dichroism , DNA Primers , Humans , Mutagenesis, Site-Directed , NIMA-Related Kinases , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation , Protein Serine-Threonine Kinases/genetics , Ultracentrifugation
5.
Nat Cell Biol ; 12(12): 1166-76, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21076410

ABSTRACT

During interphase, centrosomes are held together by a proteinaceous linker that connects the proximal ends of the mother and daughter centriole. This linker is disassembled at the onset of mitosis in a process known as centrosome disjunction, thereby facilitating centrosome separation and bipolar spindle formation. The NIMA (never in mitosis A)-related kinase Nek2A is implicated in disconnecting the centrosomes through disjoining the linker proteins C-Nap1 and rootletin. However, the mechanisms controlling centrosome disjunction remain poorly understood. Here, we report that two Hippo pathway components, the mammalian sterile 20-like kinase 2 (Mst2) and the scaffold protein Salvador (hSav1), directly interact with Nek2A and regulate its ability to localize to centrosomes, and phosphorylate C-Nap1 and rootletin. Furthermore, we demonstrate that the hSav1-Mst2-Nek2A centrosome disjunction pathway becomes essential for bipolar spindle formation on partial inhibition of the kinesin-5 Eg5. We propose that hSav1-Mst2-Nek2A and Eg5 have distinct, but complementary functions, in centrosome disjunction.


Subject(s)
Cell Cycle Proteins/metabolism , Centrosome/metabolism , Protein Serine-Threonine Kinases/metabolism , Amino Acid Sequence , Humans , Interphase , Molecular Sequence Data , NIMA-Related Kinases , Sequence Alignment , Serine-Threonine Kinase 3
6.
J Biol Chem ; 281(51): 39465-70, 2006 Dec 22.
Article in English | MEDLINE | ID: mdl-17038315

ABSTRACT

Heat-labile enterotoxin (Etx) produced by certain strains of Escherichia coli is a major virulence factor related to cholera toxin. Both are hexameric proteins comprising one A-subunit and five B-subunits. The pentameric B-subunit of E. coli has a high affinity for G(M1)-ganglioside receptors on gut epithelial cells and is directly responsible for toxin entry. The pentameric B-subunit (EtxB(5)) is an exceptionally stable protein, being able to maintain its quaternary structure over a wide pH range (2.0- 11.0). However, little is known about the formation of the pentameric structure (EtxB(5)) from newly synthesized B-subunit monomers (EtxB(1)). We previously described and characterized a mAb (LDS47) that was shown to be highly specific for an N-terminal decapeptide region of EtxB(1) (Amin, T., Larkins, A., James, R. F. L., and Hirst, T. R. (1995) J. Biol. Chem. 270, 20143-20150). Here we also describe a mAb (LDS16) with exquisite specificity for pentameric EtxB. In this study, we have used these two mAbs, in combination, to probe the in vitro assembly of EtxB(5) from EtxB(1). EtxB pentamers disassemble in highly acidic conditions, giving rise to monomeric B-subunits that can reassemble if placed in buffers of neutral pH. Using this in vitro assembly model, it was found that at a molar ratio of 1:1; LDS47:EtxB, 50% of reassembly was inhibited, and that this inhibition increased to 90% at a ratio of 2:1. These results infer that the N-terminal decapeptide region (APQSITELCS) defined by the LDS47 antibody is crucial for competent pentameric B-subunit assembly and stabilization.


Subject(s)
Enterotoxins/physiology , Escherichia coli Proteins/physiology , Escherichia coli/metabolism , Animals , Antibodies, Monoclonal/chemistry , Bacterial Toxins/chemistry , Binding Sites , Dose-Response Relationship, Drug , Enterotoxins/chemistry , Escherichia coli Proteins/chemistry , Hybridomas/metabolism , Hydrogen-Ion Concentration , Mice , Mice, Inbred BALB C , Models, Molecular , Protein Conformation , Protein Structure, Quaternary , Protein Structure, Tertiary , Recombinant Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL