Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 477
Filter
1.
Phys Rev Lett ; 132(15): 155102, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38683000

ABSTRACT

We present the first experimental study of plasmoid formation in a magnetic reconnection layer undergoing rapid radiative cooling, a regime relevant to extreme astrophysical plasmas. Two exploding aluminum wire arrays, driven by the Z machine, generate a reconnection layer (S_{L}≈120) in which the cooling rate far exceeds the hydrodynamic transit rate (τ_{hydro}/τ_{cool}>100). The reconnection layer generates a transient burst of >1 keV x-ray emission, consistent with the formation and subsequent rapid cooling of the layer. Time-gated x-ray images show fast-moving (up to 50 km s^{-1}) hotspots in the layer, consistent with the presence of plasmoids in 3D resistive magnetohydrodynamic simulations. X-ray spectroscopy shows that these hotspots generate the majority of Al K-shell emission (around 1.6 keV) prior to the onset of cooling, and exhibit temperatures (170 eV) much greater than that of the plasma inflows and the rest of the reconnection layer, thus providing insight into the generation of high-energy radiation in radiatively cooled reconnection events.

2.
Phys Rev Lett ; 132(3): 035101, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38307081

ABSTRACT

Magnetic reconnection is a ubiquitous and fundamental process in plasmas by which magnetic fields change their topology and release magnetic energy. Despite decades of research, the physics governing the reconnection process in many parameter regimes remains controversial. Contemporary reconnection theories predict that long, narrow current sheets are susceptible to the tearing instability and split into isolated magnetic islands (or plasmoids), resulting in an enhanced reconnection rate. While several experimental observations of plasmoids in the regime of low-to-intermediate ß (where ß is the ratio of plasma thermal pressure to magnetic pressure) have been made, there is a relative lack of experimental evidence for plasmoids in the high-ß reconnection environments which are typical in many space and astrophysical contexts. Here, we report strong experimental evidence for plasmoid formation in laser-driven high-ß reconnection experiments.

3.
BMC Genomics ; 25(1): 15, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38166627

ABSTRACT

The sacred datura plant (Solanales: Solanaceae: Datura wrightii) has been used to study plant-herbivore interactions for decades. The wealth of information that has resulted leads it to have potential as a model system for studying the ecological and evolutionary genomics of these interactions. We present a de novo Datura wrightii genome assembled using PacBio HiFi long-reads. Our assembly is highly complete and contiguous (N50 = 179Mb, BUSCO Complete = 97.6%). We successfully detected a previously documented ancient whole genome duplication using our assembly and have classified the gene duplication history that generated its coding sequence content. We use it as the basis for a genome-guided differential expression analysis to identify the induced responses of this plant to one of its specialized herbivores (Coleoptera: Chrysomelidae: Lema daturaphila). We find over 3000 differentially expressed genes associated with herbivory and that elevated expression levels of over 200 genes last for several days. We also combined our analyses to determine the role that different gene duplication categories have played in the evolution of Datura-herbivore interactions. We find that tandem duplications have expanded multiple functional groups of herbivore responsive genes with defensive functions, including UGT-glycosyltranserases, oxidoreductase enzymes, and peptidase inhibitors. Overall, our results expand our knowledge of herbivore-induced plant transcriptional responses and the evolutionary history of the underlying herbivore-response genes.


Subject(s)
Coleoptera , Datura , Animals , Herbivory , Gene Duplication , Datura/genetics , Datura/metabolism , Coleoptera/genetics
4.
Prim Care Diabetes ; 18(1): 37-43, 2024 02.
Article in English | MEDLINE | ID: mdl-37926590

ABSTRACT

AIM: To assess patients' and healthcare professionals' perspectives of a specialist-led Diabetes Risk-based Assessment Clinic (DIRAC) for people with diabetes at high risk of complications (PWDHRC) in areas of deprivation in Coventry, UK. METHODS: A qualitative evaluation of a pilot trial, comprising a specialist team intervention (DIRAC), was undertaken in seven GP practices through observations of weekly virtual or occasional face-to-face patient consultations and monthly interventionists' meetings. Semi-structured interviews were carried out post-intervention, with PWDHRC, primary care clinicians and diabetes specialists (interventionists). Thematic analyses of observations and interviews were undertaken. KEY FINDINGS: Over 12 months, 28 DIRAC clinics comprising 154 patient consultations and five interventionists' meetings, were observed. 19 interviews were undertaken, PWDHRC experienced 'culturally-sensitive care from a specialist-led clinic intervention encompassing integrated care. This model of care was recommended at GP practice level, all participants (PWDHRC, primary care clinicians and diabetes specialist interventionists) felt upskilled to deal with complex diabetes care. The EMIS and ECLIPSE technologies utilised during the intervention were perceived to positively contribute to diabetes management of PWDHRC despite reservations around cost and database. CONCLUSION: The specialist-led DIRACs were largely appreciated by study participants. These qualitative data support the trial progressing to a full-service evaluation.


Subject(s)
Diabetes Mellitus , General Practice , Humans , Attitude of Health Personnel , Diabetes Mellitus/diagnosis , Diabetes Mellitus/therapy , Health Personnel , Risk Assessment , Qualitative Research , Clinical Trials as Topic
5.
Phys Rev Lett ; 130(19): 195101, 2023 May 12.
Article in English | MEDLINE | ID: mdl-37243644

ABSTRACT

We present results from pulsed-power driven differentially rotating plasma experiments designed to simulate physics relevant to astrophysical disks and jets. In these experiments, angular momentum is injected by the ram pressure of the ablation flows from a wire array Z pinch. In contrast to previous liquid metal and plasma experiments, rotation is not driven by boundary forces. Axial pressure gradients launch a rotating plasma jet upward, which is confined by a combination of ram, thermal, and magnetic pressure of a surrounding plasma halo. The jet has subsonic rotation, with a maximum rotation velocity 23±3 km/s. The rotational velocity profile is quasi-Keplerian with a positive Rayleigh discriminant κ^{2}∝r^{-2.8±0.8} rad^{2}/s^{2}. The plasma completes 0.5-2 full rotations in the experimental time frame (∼150 ns).

6.
Phys Rev Lett ; 129(22): 225001, 2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36493430

ABSTRACT

We present a study of perpendicular subcritical shocks in a collisional laboratory plasma. Shocks are produced by placing obstacles into the supermagnetosonic outflow from an inverse wire array z pinch. We demonstrate the existence of subcritical shocks in this regime and find that secondary shocks form in the downstream. Detailed measurements of the subcritical shock structure confirm the absence of a hydrodynamic jump. We calculate the classical (Spitzer) resistive diffusion length and show that it is approximately equal to the shock width. We measure little heating across the shock (<10% of the ion kinetic energy) which is consistent with an absence of viscous dissipation.

7.
Rev Sci Instrum ; 93(10): 103530, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36319372

ABSTRACT

We present a technique to measure the time-resolved velocity and ion sound speed in magnetized, supersonic high-energy-density plasmas. We place an inductive ("b-dot") probe in a supersonic pulsed-power-driven plasma flow and measure the magnetic field advected by the plasma. As the magnetic Reynolds number is large (RM > 10), the plasma flow advects a magnetic field proportional to the current at the load. This enables us to estimate the flow velocity as a function of time from the delay between the current at the load and the signal at the probe. The supersonic flow also generates a hydrodynamic bow shock around the probe, the structure of which depends on the upstream sonic Mach number. By imaging the shock around the probe with a Mach-Zehnder interferometer, we determine the upstream Mach number from the shock Mach angle, which we then use to determine the ion sound speed from the known upstream velocity. We use the sound speed to infer the value of Z̄Te, where Z̄ is the average ionization and Te is the electron temperature. We use this diagnostic to measure the time-resolved velocity and sound speed of a supersonic (MS ∼ 8), super-Alfvénic (MA ∼ 2) aluminum plasma generated during the ablation stage of an exploding wire array on the Magpie generator (1.4 MA, 250 ns). The velocity and Z̄Te measurements agree well with the optical Thompson scattering measurements reported in the literature and with 3D resistive magnetohydrodynamic simulations in GORGON.

8.
J Frailty Aging ; 11(2): 214-223, 2022.
Article in English | MEDLINE | ID: mdl-35441200

ABSTRACT

BACKGROUND: Frailty in older adults is a rapidly growing unmet medical need. It is an aging-related syndrome characterized by physical decline leading to higher risk of adverse health outcomes. OBJECTIVES: To evaluate the efficacy of Lomecel-B, an allogeneic medicinal signaling cell (MSC) formulation, in older adults with frailty. DESIGN: This multicenter, randomized, parallel-arm, double-blinded, and placebo-controlled phase 2b trial is designed to evaluate dose-range effects of Lomecel-B for frailty on physical functioning, patient-reported outcomes (PROs), frailty status, and biomarkers. SETTING: Eight enrolling clinical research centers, including the Miami Veterans Affairs Medical Center. PARTICIPANTS: Target enrollment is 150 subjects aged 70-85 years of any race, ethnicity, or gender. Enrollment criteria include a Clinical Frailty Score of 5 ("mild") or 6 ("moderate"), a 6MWT of 200-400 m, and serum tumor necrosis factor-alpha (TNF-α) ≥2.5 pg/mL. INTERVENTION: A single intravenous infusion of Lomecel-B (25, 50, 100, or 200 million cells) or placebo (N=30/arm). Patients are followed for 365 days for safety, and the efficacy assessments performed at 90, 180, and 270 days. MEASUREMENTS: The primary endpoint is change in 6MWT in the Lomecel-B-treated arms versus placebo at 180 days post-infusion. Secondary and exploratory endpoints include change in: 6MWT and other physical function measures at all time points; PROs; frailty status; cognitive status; and an inflammatory biomarkers panel. A pre-specified sub-study examines vascular/endothelial biomarkers. Safety is evaluated throughout the trial. RESULTS: The trial is conducted under a Food and Drug Administration Investigational New Drug (IND), with Institutional Review Board approval, and monitoring by an NIH-appointed independent Data Safety Monitoring Board. CONCLUSION: This clinical trial investigates the use of a regenerative medicine strategy for frailty in older adults. The results will further the understanding of the potential for Lomecel-B in the geriatric condition of frailty.


Subject(s)
COVID-19 , Frailty , Aged , Biomarkers , Double-Blind Method , Humans , SARS-CoV-2 , Treatment Outcome
9.
Am Heart J Plus ; 14: 100125, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35378797

ABSTRACT

Purpose: This study assessed a functional protocol to identify myocarditis or myocardial involvement in competitive athletes following SARS-CoV2 infection. Methods: We prospectively evaluated competitive athletes (n = 174) for myocarditis or myocardial involvement using the Multidisciplinary Inquiry of Athletes in Miami (MIAMI) protocol, a median of 18.5 (IQR 16-25) days following diagnosis of COVID-19 infection. The protocol included biomarker analysis, ECG, cardiopulmonary stress echocardiography testing with global longitudinal strain (GLS), and targeted cardiac MRI for athletes with abnormal findings. Patients were followed for median of 148 days. Results: We evaluated 52 females and 122 males, with median age 21 (IQR: 19, 22) years. Five (2.9%) had evidence of myocardial involvement, including definite or probable myocarditis (n = 2). Three of the 5 athletes with myocarditis or myocardial involvement had clinically significant abnormalities during stress testing including ventricular ectopy, wall motion abnormalities and/or elevated VE/VCO2, while the other two athletes had resting ECG abnormalities. VO2max, left ventricular ejection fraction and GLS were similar between those with or without myocardial involvement. No adverse events were reported in the 169 athletes cleared to exercise at a median follow-up of 148 (IQR108,211) days. Patients who were initially restricted from exercise had no adverse sequelae and were cleared to resume training between 3 and 12 months post diagnosis. Conclusions: Screening protocols that include exercise testing may enhance the sensitivity of detecting COVID-19 related myocardial involvement following recovery from SARS-CoV2 infection.

10.
JCI Insight ; 6(12)2021 06 22.
Article in English | MEDLINE | ID: mdl-34003801

ABSTRACT

BACKGROUND: Dietary sodium intake mismatches urinary sodium excretion over prolonged periods. Our aims were to localize and quantify electrostatically bound sodium within human skin using triple-quantum-filtered (TQF) protocols for MRI and magnetic resonance spectroscopy (MRS) and to explore dermal sodium in type 2 diabetes mellitus (T2D). METHODS: We recruited adult participants with T2D (n = 9) and euglycemic participants with no history of diabetes mellitus (n = 8). All had undergone lower limb amputations or abdominal skin reduction surgery for clinical purposes. We used 20 µm in-plane resolution 1H MRI to visualize anatomical skin regions ex vivo from skin biopsies taken intraoperatively, 23Na TQF MRI/MRS to explore distribution and quantification of freely dissolved and bound sodium, and inductively coupled plasma mass spectrometry to quantify sodium in selected skin samples. RESULTS: Human dermis has a preponderance (>90%) of bound sodium that colocalizes with the glycosaminoglycan (GAG) scaffold. Bound and free sodium have similar anatomical locations. T2D associates with a severely reduced dermal bound sodium capacity. CONCLUSION: We provide the first evidence to our knowledge for high levels of bound sodium within human dermis, colocating to the GAG scaffold, consistent with a dermal "third space repository" for sodium. T2D associates with diminished dermal electrostatic binding capacity for sodium.


Subject(s)
Dermis/metabolism , Diabetes Mellitus, Type 2/metabolism , Glycosaminoglycans/metabolism , Sodium/metabolism , Adult , Aged , Dermis/chemistry , Dermis/diagnostic imaging , Female , Glycosaminoglycans/chemistry , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Sodium/chemistry
11.
Rev Sci Instrum ; 92(3): 033521, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33820051

ABSTRACT

We report on a recently developed laser-probing diagnostic, which allows direct measurements of ray-deflection angles in one axis while retaining imaging capabilities in the other axis. This allows us to measure the spectrum of angular deflections from a laser beam, which passes through a turbulent high-energy-density plasma. This spectrum contains information about the density fluctuations within the plasma, which deflect the probing laser over a range of angles. We create synthetic diagnostics using ray-tracing to compare this new diagnostic with standard shadowgraphy and schlieren imaging approaches, which demonstrates the enhanced sensitivity of this new diagnostic over standard techniques. We present experimental data from turbulence behind a reverse shock in a plasma and demonstrate that this technique can measure angular deflections between 0.06 and 34 mrad, corresponding to a dynamic range of over 500.

12.
Rev Sci Instrum ; 92(3): 033542, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33819991

ABSTRACT

Optical collective Thomson scattering (TS) is used to diagnose magnetized high energy density physics experiments at the Magpie pulsed-power generator at Imperial College London. The system uses an amplified pulse from the second harmonic of a Nd:YAG laser (3 J, 8 ns, 532 nm) to probe a wide diversity of high-temperature plasma objects, with densities in the range of 1017-1019 cm-3 and temperatures between 10 eV and a few keV. The scattered light is collected from 100 µm-scale volumes within the plasmas, which are imaged onto optical fiber arrays. Multiple collection systems observe these volumes from different directions, providing simultaneous probing with different scattering K-vectors (and different associated α-parameters, typically in the range of 0.5-3), allowing independent measurements of separate velocity components of the bulk plasma flow. The fiber arrays are coupled to an imaging spectrometer with a gated intensified charge coupled device. The spectrometer is configured to view the ion-acoustic waves of the collective Thomson scattered spectrum. Fits to the spectra with the theoretical spectral density function S(K, ω) yield measurements of the local plasma temperatures and velocities. Fitting is constrained by independent measurements of the electron density from laser interferometry and the corresponding spectra for different scattering vectors. This TS diagnostic has been successfully implemented on a wide range of experiments, revealing temperature and flow velocity transitions across magnetized shocks, inside rotating plasma jets and imploding wire arrays, as well as providing direct measurements of drift velocities inside a magnetic reconnection current sheet.

14.
Clin Oncol (R Coll Radiol) ; 32(8): 481-489, 2020 08.
Article in English | MEDLINE | ID: mdl-32405158

ABSTRACT

Patients treated with curative-intent lung radiotherapy are in the group at highest risk of severe complications and death from COVID-19. There is therefore an urgent need to reduce the risks associated with multiple hospital visits and their anti-cancer treatment. One recommendation is to consider alternative dose-fractionation schedules or radiotherapy techniques. This would also increase radiotherapy service capacity for operable patients with stage I-III lung cancer, who might be unable to have surgery during the pandemic. Here we identify reduced-fractionation for curative-intent radiotherapy regimes in lung cancer, from a literature search carried out between 20/03/2020 and 30/03/2020 as well as published and unpublished audits of hypofractionated regimes from UK centres. Evidence, practical considerations and limitations are discussed for early-stage NSCLC, stage III NSCLC, early-stage and locally advanced SCLC. We recommend discussion of this guidance document with other specialist lung MDT members to disseminate the potential changes to radiotherapy practices that could be made to reduce pressure on other departments such as thoracic surgery. It is also a crucial part of the consent process to ensure that the risks and benefits of undergoing cancer treatment during the COVID-19 pandemic and the uncertainties surrounding toxicity from reduced fractionation have been adequately discussed with patients. Furthermore, centres should document all deviations from standard protocols, and we urge all colleagues, where possible, to join national/international data collection initiatives (such as COVID-RT Lung) aimed at recording the impact of the COVID-19 pandemic on lung cancer treatment and outcomes.


Subject(s)
Betacoronavirus , Carcinoma, Non-Small-Cell Lung/radiotherapy , Coronavirus Infections/complications , Dose Fractionation, Radiation , Lung Neoplasms/radiotherapy , Pneumonia, Viral/complications , Practice Guidelines as Topic/standards , Small Cell Lung Carcinoma/radiotherapy , COVID-19 , Carcinoma, Non-Small-Cell Lung/virology , Clinical Trials as Topic , Coronavirus Infections/virology , Humans , Lung Neoplasms/virology , Meta-Analysis as Topic , Pandemics , Pneumonia, Viral/virology , Risk Management , SARS-CoV-2 , Small Cell Lung Carcinoma/virology , Systematic Reviews as Topic
15.
J Frailty Aging ; 9(1): 4-8, 2020.
Article in English | MEDLINE | ID: mdl-32150207

ABSTRACT

Biomarkers of frailty and sarcopenia are essential to advance the understanding of these conditions of aging and develop new diagnostic tools and effective treatments. The International Conference on Frailty and Sarcopenia Research (ICFSR) Task Force - a group of academic and industry scientists from around the world -- met in February 2019 to discuss the current state of biomarker development for frailty and sarcopenia. The D3Cr dilution method, which assesses creatinine excretion as a biochemical measure of muscle mass, was suggested as a more accurate measure of functional muscle mass than assessment by dual energy x-ray absorptiometry (DXA). Proposed biomarkers of frailty include markers of inflammation, the hypothalamic-pituitary-adrenal (HPA) axis response to stress, altered glucose insulin dynamics, endocrine dysregulation, aging, and others, acknowledging the complex multisystem etiology that contributes to frailty. Lack of clarity regarding a regulatory pathway for biomarker development has hindered progress; however, there are currently several international efforts to develop such biomarkers as tools to improve the treatment of individuals presenting these conditions.


Subject(s)
Frailty , Sarcopenia , Advisory Committees , Biomarkers , Congresses as Topic , Humans
16.
Evol Lett ; 4(1): 83-90, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32055414

ABSTRACT

Negative frequency-dependent selection (NFDS) has been shown to maintain polymorphism in a diverse array of traits. The action of NFDS has been confirmed through modeling, experimental approaches, and genetic analyses. In this study, we investigated NFDS in the wild using morph-frequency changes spanning a 20-year period from over 30 dimorphic populations of Datura wrightii. In these populations, plants either possess glandular (sticky) or non-glandular (velvety) trichomes, and the ratio of these morphs varies substantially among populations. Our method provided evidence that NFDS, rather than drift or migration, is the primary force maintaining this dimorphism. Most populations that were initially dimorphic remained dimorphic, and the overall mean and variance in morph frequency did not change over time. Furthermore, morph-frequency differences were not related to geographic distances. Together, these results indicate that neither directional selection, drift, or migration played a substantial role in determining morph frequencies. However, as predicted by negative frequency-dependent selection, we found that the rare morph tended to increase in frequency, leading to a negative relationship between the change in the frequency of the sticky morph and its initial frequency. In addition, we found that morph-frequency change over time was significantly correlated with the damage inflicted by two herbivores: Lema daturaphila and Tupiochoris notatus. The latter is a specialist on the sticky morph and damage by this herbivore was greatest when the sticky morph was common. The reverse was true for L. daturaphila, such that damage increased with the frequency of the velvety morph. These findings suggest that these herbivores contribute to balancing selection on the observed trichome dimorphism.

17.
J Hist Ideas ; 80(4): 575-596, 2019.
Article in English | MEDLINE | ID: mdl-31607688

ABSTRACT

Völkisch research was a phenomenon in the social sciences and humanities that aimed to describe and cultivate the Volk, conceived broadly as a group united by some pre-existing or transcendental bond. Studies of this research complex have thus far been dominated by questions related to its close affiliation with the Nazi regime, but much remains unknown about how its longer-term development related to the transformation of science or to conceptual changes in the notion of Volk. This article addresses these questions by tracing the ways in which the idea of Volk transformed through accommodation with shifting scientific norms.

18.
J Frailty Aging ; 7(3): 150-154, 2018.
Article in English | MEDLINE | ID: mdl-30095144

ABSTRACT

To reduce disability and dependence in older adults, frailty may represent an appropriate target for intervention. While preventing frailty through lifestyle interventions may be the optimal public health approach for many population groups, pharmacological approaches will likely be needed for individuals who meet frailty criteria or who have comorbid conditions that contribute to and complicate the frailty syndrome, and for those who are not compliant with lifestyle interventions. Barriers to successful development of drug treatments for frailty include variability in how the frailty syndrome is defined, lack of agreement on the best diagnostic tools and outcome measures, and the paucity of sensitive, reliable, and validated biomarkers. The International Conference on Frailty and Sarcopenia Research Task Force met in Miami, Florida, on February 28, 2018, to consider the status of treatments under development for frailty and discuss potential strategies for advancing the field. They concluded that at the present time, there may be a more productive regulatory pathway for adjuvant treatments or trials targeting specific functional outcomes such as gait speed. They also expressed optimism that several studies currently underway may provide the insight needed to advance drug development for frailty.


Subject(s)
Clinical Trials as Topic/methods , Frailty/drug therapy , Research Design , Advisory Committees , Aged , Congresses as Topic , Humans
20.
Ann Oncol ; 29(3): 563-572, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29324969

ABSTRACT

The apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like (APOBEC) mutational signature has only recently been detected in a multitude of cancers through next-generation sequencing. In contrast, APOBEC has been a focus of virology research for over a decade. Many lessons learnt regarding APOBEC within virology are likely to be applicable to cancer. In this review, we explore the parallels between the role of APOBEC enzymes in HIV and cancer evolution. We discuss data supporting the role of APOBEC mutagenesis in creating HIV genome heterogeneity, drug resistance, and immune escape variants. We hypothesize similar functions of APOBEC will also hold true in cancer.


Subject(s)
APOBEC Deaminases/physiology , Drug Resistance/physiology , Mutagenesis/physiology , Neoplasms/enzymology , Neoplasms/genetics , Animals , HIV/genetics , HIV Infections/enzymology , Humans , Immune Tolerance/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...