Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Vet Microbiol ; 131(3-4): 358-68, 2008 Oct 15.
Article in English | MEDLINE | ID: mdl-18513895

ABSTRACT

Bovine keratoconjunctivitis (BKC), colloquially referred to as 'pinkeye', is a disease affecting cattle worldwide; it costs cattle producers millions of dollars in economic loss annually. While Moraxella spp. are the primary etiologic agent of pinkeye, surveys of flora from the conjunctivae of livestock from around the world have indicated that a variety of bacterial commensals occupy this niche. We used molecular biology-based methods to determine the composition of bacterial flora in the conjunctivae of normal dairy and beef cattle from Maryland (n=113), and beef cattle with clinical BKC from Louisiana (n=42). Three regimens were used: 16S rRNA PCR and DGGE analysis of amplicons; 16S rRNA PCR and cloning of amplicons into Escherichia coli followed by screening and sequencing of clones harboring inserts; and culture of bacteria on chromogenic agar followed by 16S rRNA PCR and sequencing. Most taxa were comprised of saprophytes found in the environment, such as Bacillus, Pantoea, E. coli, and Exiguobacterium. Moraxella spp. were infrequently observed. Some species, such as Propionibacterium acnes, represent taxa not previously associated with the conjunctivae. Bacillus pumilus and Bacillus licheniformis isolates from the conjunctivae of Maryland cattle were genetically distinct from isolates previously implicated in septic infections in cattle at the same location. We conclude that employing 16S rRNA-based methods for bacterial identification can be useful in defining the flora present in the conjunctivae of normal cattle, and those with BKC.


Subject(s)
Bacteria/genetics , Cattle Diseases/microbiology , Keratoconjunctivitis, Infectious/microbiology , RNA, Ribosomal, 16S/genetics , Animals , Cattle , Cloning, Molecular , Polymerase Chain Reaction/veterinary
2.
J Agric Food Chem ; 55(21): 8806-13, 2007 Oct 17.
Article in English | MEDLINE | ID: mdl-17892259

ABSTRACT

Perchlorate has been detected in U.S. milk samples from many different states. Applying data from a recently reported 9-week experiment in which 16 Holstein dairy cows were administered perchlorate allowed us to derive an equation for the dose-response relationship between perchlorate concentrations in feed/drinking water and its appearance in milk. Examination of background concentrations of perchlorate in the total mixed ration (TMR) fed in addition to the variable dose supplied to treated cows as a ruminal infusate revealed that cows receive significant and variable exposure to perchlorate from the TMR. Weekly examination of the TMR disclosed that a change in ingredients midway through the experiment caused a significant (78%) change in TMR perchlorate concentration. Analyses of the ingredients comprising the TMR revealed that 41.9% of the perchlorate came from corn silage, 22.9% came from alfalfa hay and 11.7% was supplied by sudan grass. Finally, USDA Food and Nutrition Survey data on fluid milk consumption were used to predict potential human exposure from milk that contained concentrations of perchlorate observed in our previous dosing study. The study suggests that reducing perchlorate concentration in dairy feed may reduce perchlorate concentrations in milk as well as the potential to reduce human exposure to perchlorate in milk.


Subject(s)
Animal Feed/analysis , Environmental Exposure , Milk/chemistry , Perchlorates/analysis , Animals , Cattle , Female , Food Contamination/analysis , Humans
3.
J Dairy Sci ; 86(10): 3128-37, 2003 Oct.
Article in English | MEDLINE | ID: mdl-14594231

ABSTRACT

Several species of gram-negative bacteria, including Escherichia coli, Klebsiella pneumoniae, and various species of Enterobacter, are common mastitis pathogens. All of these bacteria are characterized by the presence of endotoxin or lipopolysaccharide (LPS) in their outer membrane. The bovine mammary gland is highly sensitive to LPS, and LPS has been implicated, in part, in the pathogenesis of gram-negative mastitis. Recognition of LPS is a key event in the innate immune response to gram-negative infection and is mediated by the accessory molecules CD14 and LPS-binding protein (LBP). The objective of the current study was to determine whether LBP levels increased in the blood and mammary gland following LPS challenge. The left and right quarters of five midlactating Holstein cows were challenged with either saline or LPS (100 microg), respectively, and milk and blood samples collected. Basal levels of plasma and milk LBP were 38 and 6 microg/ml, respectively. Plasma LBP levels increased as early as 8 h post-LPS challenge and reached maximal levels of 138 microg/ ml by 24 h. Analysis of whey samples derived from LPS-treated quarters revealed an increase in milk LBP by 12 h. Similar to plasma, maximal levels of milk LBP (34 microg/ml) were detected 24 h following the initial LPS challenge. Increments in milk LBP levels paralleled a rise in soluble CD14 (sCD14) levels and initial rises in the levels of these proteins were temporally coincident with maximal neutrophil recruitment to the inflamed gland. Because LBP and sCD14 are known to enhance LPS-induced host cell activation and to facilitate detoxification of LPS, these data are consistent with a role for these molecules in mediating mammary gland responses to LPS.


Subject(s)
Acute-Phase Proteins , Carrier Proteins/blood , Cattle/metabolism , Lipopolysaccharide Receptors/analysis , Lipopolysaccharides/administration & dosage , Membrane Glycoproteins , Animals , Carrier Proteins/analysis , Escherichia coli , Female , Interleukin-8/biosynthesis , Kinetics , Lactation , Leukocyte Count , Mammary Glands, Animal/chemistry , Mammary Glands, Animal/drug effects , Mammary Glands, Animal/metabolism , Mastitis, Bovine/blood , Mastitis, Bovine/chemically induced , Mastitis, Bovine/physiopathology , Milk/chemistry , Neutrophils
SELECTION OF CITATIONS
SEARCH DETAIL
...