Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
J Physiol ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758005

ABSTRACT

Volitional movement requires descending input from the motor cortex and sensory feedback through the spinal cord. We previously developed a paired brain and spinal electrical stimulation approach in rats that relies on convergence of the descending motor and spinal sensory stimuli in the cervical cord. This approach strengthened sensorimotor circuits and improved volitional movement through associative plasticity. In humans, it is not known whether posterior epidural spinal cord stimulation targeted at the sensorimotor interface or anterior epidural spinal cord stimulation targeted within the motor system is effective at facilitating brain evoked responses. In 59 individuals undergoing elective cervical spine decompression surgery, the motor cortex was stimulated with scalp electrodes and the spinal cord was stimulated with epidural electrodes, with muscle responses being recorded in arm and leg muscles. Spinal electrodes were placed either posteriorly or anteriorly, and the interval between cortex and spinal cord stimulation was varied. Pairing stimulation between the motor cortex and spinal sensory (posterior) but not spinal motor (anterior) stimulation produced motor evoked potentials that were over five times larger than brain stimulation alone. This strong augmentation occurred only when descending motor and spinal afferent stimuli were timed to converge in the spinal cord. Paired stimulation also increased the selectivity of muscle responses relative to unpaired brain or spinal cord stimulation. Finally, clinical signs suggest that facilitation was observed in both injured and uninjured segments of the spinal cord. The large effect size of this paired stimulation makes it a promising candidate for therapeutic neuromodulation. KEY POINTS: Pairs of stimuli designed to alter nervous system function typically target the motor system, or one targets the sensory system and the other targets the motor system for convergence in cortex. In humans undergoing clinically indicated surgery, we tested paired brain and spinal cord stimulation that we developed in rats aiming to target sensorimotor convergence in the cervical cord. Arm and hand muscle responses to paired sensorimotor stimulation were more than five times larger than brain or spinal cord stimulation alone when applied to the posterior but not anterior spinal cord. Arm and hand muscle responses to paired stimulation were more selective for targeted muscles than the brain- or spinal-only conditions, especially at latencies that produced the strongest effects of paired stimulation. Measures of clinical evidence of compression were only weakly related to the paired stimulation effect, suggesting that it could be applied as therapy in people affected by disorders of the central nervous system.

2.
Neurotrauma Rep ; 4(1): 838-847, 2023.
Article in English | MEDLINE | ID: mdl-38156073

ABSTRACT

Transcutaneous spinal cord stimulation (tSCS) is an emerging therapeutic strategy to target spinal autonomic circuitry to normalize and stabilize blood pressure (BP) in hypotensive persons living with chronic spinal cord injury (SCI). Our aim is to describe our current methodological approach to identify individual tSCS parameters that result in the maintenance of seated systolic blood pressure (SBP) within a pre-defined target range. The parent study is a prospective, randomized clinical trial in which eligible participants will undergo multiple mapping sessions to optimize tSCS parameter settings to promote stable SBP within a target range of 110-120 mm Hg for males and 100-120 mm Hg for females. Parameter mapping includes cathode electrode placement site (T7/8, T9/10, T11/12, and L1/2), stimulation frequency (30, 60 Hz), current amplitudes (0-120 mA), waveform (mono- and biphasic), pulse width (1000 µs), and use of carrier frequency (0, 10 kHz). Each participant will undergo up to 10 mapping sessions involving different electrode placement sites and parameter settings. BP will be continuously monitored throughout each mapping session. Stimulation amplitude (mA) will be increased at intervals of between 2 and 10 mA until one of the following occurs: 1) seated SBP reaches the target range; 2) tSCS intensity reaches 120 mA; or 3) the participant requests to stop. Secondary outcomes recorded include 1) symptoms related to autonomic dysreflexia and orthostatic hypotension, 2) Likert pain scale, and 3) skin appearance after removal of the tSCS electrode. Clinical Trials Registration: NCT05180227.

3.
Curr Opin Neurol ; 36(6): 523-530, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37865833

ABSTRACT

PURPOSE OF REVIEW: Remote ischemic conditioning (RIC) involves transient blood flow restriction to one limb leading to systemic tissue-protective effects. RIC shares some potential underlying mechanisms with intermittent hypoxia (IH), in which brief bouts of systemic hypoxia trigger increases in growth factor expression and neural plasticity. RIC has shown promise in acute myocardial infarction and stroke but may be applicable toward chronic neuropathology as well. Consequently, this review discusses similarities and differences between RIC and IH and presents preliminary and ongoing research findings regarding RIC. RECENT FINDINGS: Several publications demonstrated that combining RIC with motor training may enhance motor learning in adults with intact nervous systems, though the precise mechanisms were unclear. Our own preliminary data has found that RIC, in conjunction with task specific exercise, can increase corticospinal excitability in a subset of people without neurological injury and in those with chronic cervical spinal cord injury or amyotrophic lateral sclerosis. SUMMARY: RIC is a low-cost intervention easy to deliver in a clinical or home setting. Its potential application to facilitate neural plasticity and motor learning during rehabilitation training for individuals with chronic neurological disorders is a novel concept requiring further investigation to characterize mechanisms, safety, and efficacy.


Subject(s)
Myocardial Infarction , Spinal Cord Injuries , Stroke , Adult , Humans , Hypoxia
4.
medRxiv ; 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-37645795

ABSTRACT

Volitional movement requires descending input from motor cortex and sensory feedback through the spinal cord. We previously developed a paired brain and spinal electrical stimulation approach in rats that relies on convergence of the descending motor and spinal sensory stimuli in the cervical cord. This approach strengthened sensorimotor circuits and improved volitional movement through associative plasticity. In humans it is not known whether dorsal epidural SCS targeted at the sensorimotor interface or anterior epidural SCS targeted within the motor system is effective at facilitating brain evoked responses. In 59 individuals undergoing elective cervical spine decompression surgery, the motor cortex was stimulated with scalp electrodes and the spinal cord with epidural electrodes while muscle responses were recorded in arm and leg muscles. Spinal electrodes were placed either posteriorly or anteriorly, and the interval between cortex and spinal cord stimulation was varied. Pairing stimulation between the motor cortex and spinal sensory (posterior) but not spinal motor (anterior) stimulation produced motor evoked potentials that were over five times larger than brain stimulation alone. This strong augmentation occurred only when descending motor and spinal afferent stimuli were timed to converge in the spinal cord. Paired stimulation also increased the selectivity of muscle responses relative to unpaired brain or spinal cord stimulation. Finally, paired stimulation effects were present regardless of the severity of myelopathy as measured by clinical signs or spinal cord imaging. The large effect size of this paired stimulation makes it a promising candidate for therapeutic neuromodulation.

5.
Sci Rep ; 13(1): 5434, 2023 04 03.
Article in English | MEDLINE | ID: mdl-37012257

ABSTRACT

Multiple types and classes of medications are administered in the acute management of traumatic spinal cord injury. Prior clinical studies and evidence from animal models suggest that several of these medications could modify (i.e., enhance or impede) neurological recovery. We aimed to systematically determine the types of medications commonly administered, alone or in combination, in the transition from acute to subacute spinal cord injury. For that purpose, type, class, dosage, timing, and reason for administration were extracted from two large spinal cord injury datasets. Descriptive statistics were used to describe the medications administered within the first 60 days after spinal cord injury. Across 2040 individuals with spinal cord injury, 775 unique medications were administered within the two months after injury. On average, patients enrolled in a clinical trial were administered 9.9 ± 4.9 (range 0-34), 14.3 ± 6.3 (range 1-40), 18.6 ± 8.2 (range 0-58), and 21.5 ± 9.7 (range 0-59) medications within the first 7, 14, 30, and 60 days post-injury, respectively. Those enrolled in an observational study were administered on average 1.7 ± 1.7 (range 0-11), 3.7 ± 3.7 (range 0-24), 8.5 ± 6.3 (range 0-42), and 13.5 ± 8.3 (range 0-52) medications within the first 7, 14, 30, and 60 days post-injury, respectively. Polypharmacy was commonplace (up to 43 medications per day per patient). Approximately 10% of medications were administered acutely as prophylaxis (e.g., against the development of pain or infections). To our knowledge, this was the first time acute pharmacological practices have been comprehensively examined after spinal cord injury. Our study revealed a high degree of polypharmacy in the acute stages of spinal cord injury, raising the potential to impact neurological recovery. All results can be interactively explored on the RXSCI web site ( https://jutzelec.shinyapps.io/RxSCI/ ) and GitHub repository ( https://github.com/jutzca/Acute-Pharmacological-Treatment-in-SCI/ ).


Subject(s)
Spinal Cord Injuries , Animals , Recovery of Function , Cohort Studies , Spinal Cord Injuries/drug therapy , Longitudinal Studies , Pain , Spinal Cord
6.
Res Sq ; 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36824823

ABSTRACT

Background: The seemingly simple tasks of standing and walking require continuous integration of complex spinal reflex circuits between descending motor commands and ascending sensory inputs. Spinal cord injury greatly impairs standing and walking ability, but both improve with locomotor training. However, even after multiple locomotor training sessions, abnormal muscle activity and coordination persist. Thus, locomotor training alone cannot fully optimize the neuronal plasticity required to strengthen the synapses connecting the brain, spinal cord, and local circuits and potentiate neuronal activity based on need. Transcutaneous spinal cord (transspinal) stimulation alters motoneuron excitability over multiple segments by bringing motoneurons closer to threshold, a prerequisite for effectively promoting spinal locomotor network neuromodulation and strengthening neural connectivity of the injured human spinal cord. Importantly, whether concurrent treatment with transspinal stimulation and locomotor training maximizes motor recovery after spinal cord injury is unknown. Methods: Forty-five individuals with chronic spinal cord injury are receiving 40 sessions of robotic gait training primed with 30 Hz transspinal stimulation at the Thoracic 10 vertebral level. Participants are randomized to receive 30-minutes of active or sham transspinal stimulation during standing or active transspinal stimulation while supine followed by 30-minutes of robotic gait training. Over the course of locomotor training, the body weight support, treadmill speed, and leg guidance force are adjusted as needed for each participant based on absence of knee buckling during the stance phase and toe dragging during the swing phase. At baseline and after completion of all therapeutic sessions, neurophysiological recordings registering corticospinal and spinal neural excitability changes along with clinical assessment measures of standing and walking, and autonomic function via questionnaires regarding bowel, bladder and sexual function are taken. Discussion: The results of this mechanistic randomized clinical trial will demonstrate that tonic transspinal stimulation strengthens corticomotoneuronal connectivity and dynamic neuromodulation through posture-dependent corticospinal and spinal neuroplasticity. We anticipate that this mechanistic clinical trial will greatly impact clinical practice because in real-world clinical settings, noninvasive transspinal stimulation can be more easily and widely implemented than invasive epidural stimulation. Additionally, by applying multiple interventions to accelerate motor recovery, we are employing a treatment regimen that reflects a true clinical approach. Trial registration: ClinicalTrials.gov: NCT04807764; Registered on March 19, 2021.

7.
Trials ; 24(1): 145, 2023 Feb 25.
Article in English | MEDLINE | ID: mdl-36841773

ABSTRACT

BACKGROUND: The seemingly simple tasks of standing and walking require continuous integration of complex spinal reflex circuits between descending motor commands and ascending sensory inputs. Spinal cord injury greatly impairs standing and walking ability, but both improve with locomotor training. However, even after multiple locomotor training sessions, abnormal muscle activity and coordination persist. Thus, locomotor training alone cannot fully optimize the neuronal plasticity required to strengthen the synapses connecting the brain, spinal cord, and local circuits and potentiate neuronal activity based on need. Transcutaneous spinal cord (transspinal) stimulation alters motoneuron excitability over multiple segments by bringing motoneurons closer to threshold, a prerequisite for effectively promoting spinal locomotor network neuromodulation and strengthening neural connectivity of the injured human spinal cord. Importantly, whether concurrent treatment with transspinal stimulation and locomotor training maximizes motor recovery after spinal cord injury is unknown. METHODS: Forty-five individuals with chronic spinal cord injury are receiving 40 sessions of robotic gait training primed with 30 Hz transspinal stimulation at the Thoracic 10 vertebral level. Participants are randomized to receive 30 min of active or sham transspinal stimulation during standing or active transspinal stimulation while supine followed by 30 min of robotic gait training. Over the course of locomotor training, the body weight support, treadmill speed, and leg guidance force are adjusted as needed for each participant based on absence of knee buckling during the stance phase and toe dragging during the swing phase. At baseline and after completion of all therapeutic sessions, neurophysiological recordings registering corticospinal and spinal neural excitability changes along with clinical assessment measures of standing and walking, and autonomic function via questionnaires regarding bowel, bladder, and sexual function are taken. DISCUSSION: The results of this mechanistic randomized clinical trial will demonstrate that tonic transspinal stimulation strengthens corticomotoneuronal connectivity and dynamic neuromodulation through posture-dependent corticospinal and spinal neuroplasticity. We anticipate that this mechanistic clinical trial will greatly impact clinical practice because, in real-world clinical settings, noninvasive transspinal stimulation can be more easily and widely implemented than invasive epidural stimulation. Additionally, by applying multiple interventions to accelerate motor recovery, we are employing a treatment regimen that reflects a true clinical approach. TRIAL REGISTRATION: ClinicalTrials.gov NCT04807764 . Registered on March 19, 2021.


Subject(s)
Spinal Cord Injuries , Spinal Cord Stimulation , Humans , Electromyography , Spinal Cord , Walking/physiology , Physical Therapy Modalities , Spinal Cord Stimulation/methods , Randomized Controlled Trials as Topic
8.
J Neurophysiol ; 129(1): 66-82, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36417309

ABSTRACT

Although epidural stimulation of the lumbar spinal cord has emerged as a powerful modality for recovery of movement, how it should be targeted to the cervical spinal cord to activate arm and hand muscles is not well understood, particularly in humans. We sought to map muscle responses to posterior epidural cervical spinal cord stimulation in humans. We hypothesized that lateral stimulation over the dorsal root entry zone would be most effective and responses would be strongest in the muscles innervated by the stimulated segment. Twenty-six people undergoing clinically indicated cervical spine surgery consented to mapping of motor responses. During surgery, stimulation was performed in midline and lateral positions at multiple exposed segments; six arm and three leg muscles were recorded on each side of the body. Across all segments and muscles tested, lateral stimulation produced stronger muscle responses than midline despite similar latency and shape of responses. Muscles innervated at a cervical segment had the largest responses from stimulation at that segment, but responses were also observed in muscles innervated at other cervical segments and in leg muscles. The cervical responses were clustered in rostral (C4-C6) and caudal (C7-T1) cervical segments. Strong responses to lateral stimulation are likely due to the proximity of stimulation to afferent axons. Small changes in response sizes to stimulation of adjacent cervical segments argue for local circuit integration, and distant muscle responses suggest activation of long propriospinal connections. This map can help guide cervical stimulation to improve arm and hand function.NEW & NOTEWORTHY A map of muscle responses to cervical epidural stimulation during clinically indicated surgery revealed strongest activation when stimulating laterally compared to midline and revealed differences to be weaker than expected across different segments. In contrast, waveform shapes and latencies were most similar when stimulating midline and laterally, indicating activation of overlapping circuitry. Thus, a map of the cervical spinal cord reveals organization and may help guide stimulation to activate arm and hand muscles strongly and selectively.


Subject(s)
Spinal Cord Injuries , Spinal Cord Stimulation , Animals , Humans , Electromyography , Spinal Cord/physiology , Muscle, Skeletal/physiology , Forelimb , Electric Stimulation
9.
Neurorehabil Neural Repair ; 36(10-11): 659-665, 2022 11.
Article in English | MEDLINE | ID: mdl-36113101

ABSTRACT

The record-breaking pace of COVID-19 vaccine development and implementation depended heavily on collaboration among academic, government, and commercial stakeholders, especially through data-sharing and robust multicenter trials. Collaborative efforts have not been as fruitful in fields such as neurorehabilitation, where non-pharmacological interventions play a much larger role. Barriers to translating scientific advancements into clinical practice in neurorehabilitation include pervasively small study sizes, exacerbated by limited funding for non-pharmacological multicenter clinical trials; difficulty standardizing-and adequately describing-non-pharmacological interventions; and a lack of incentives for individual patient-level data-sharing. These barriers prevent reliable meta-analysis of non-pharmacological clinical studies in neurorehabilitation. This point-of-view will highlight these challenges as well as suggest practical steps that may be taken to improve the neurorehabilitation pipeline between evidence and implementation.


Subject(s)
COVID-19 , Neurological Rehabilitation , Humans , COVID-19 Vaccines , Motivation , Multicenter Studies as Topic
10.
J Neural Eng ; 19(2)2022 04 11.
Article in English | MEDLINE | ID: mdl-35325875

ABSTRACT

Brain-computer interfaces (BCIs) enabling the control of a personal computer could provide myriad benefits to individuals with disabilities including paralysis. However, to realize this potential, these BCIs must gain regulatory approval and be made clinically available beyond research participation. Therefore, a transition from engineering-oriented to clinically oriented outcome measures will be required in the evaluation of BCIs. This review examined how to assess the clinical benefit of BCIs for the control of a personal computer. We report that: (a) a variety of different patient-reported outcome measures can be used to evaluate improvements inhow a patient feels, and we offer some considerations that should guide instrument selection. (b) Activities of daily living can be assessed to demonstrate improvements inhow a patient functions, however, new instruments that are sensitive to increases in functional independence via the ability to perform digital tasks may be needed. (c) Benefits tohow a patient surviveshas not previously been evaluated but establishing patient-initiated communication channels using BCIs might facilitate quantifiable improvements in health outcomes.


Subject(s)
Brain-Computer Interfaces , Activities of Daily Living , Electroencephalography , Humans , Microcomputers , Paralysis , User-Computer Interface
11.
Acta Psychol (Amst) ; 223: 103494, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35045355

ABSTRACT

PURPOSE: Efforts to optimize human-computer interactions are becoming increasingly prevalent, especially with virtual reality (VR) rehabilitation paradigms that utilize engaging interfaces. We hypothesized that motor and perceptional behaviors within a virtual environment are modulated uniquely through different modes of control of a hand avatar depending on limb dominance. This study investigated the effects of limb dominance on performance and concurrent changes in perceptions, such as time-based measures for intentional binding, during virtual reach-to-grasp. METHODS: Participants (n = 16, healthy) controlled a virtual hand through their own hand motions with control adaptations in speed, noise, and automation. RESULTS: A significant (p < 0.01) positive relationship between performance (reaching pathlength) and binding (time-interval estimation of beep-sound after grasp contact) was observed for the dominant hand. Unique changes in performance (p < 0.0001) and binding (p < 0.0001) were observed depending on handedness and which control mode was applied. CONCLUSIONS: Developers of VR paradigms should consider limb dominance to optimize settings that facilitate better performance and perceptional engagement. Adapting VR rehabilitation for handedness may particularly benefit unilateral impairments, like hemiparesis or single-limb amputation.


Subject(s)
Movement , Virtual Reality , Hand , Hand Strength , Humans , Psychomotor Performance
12.
J Clin Med ; 10(22)2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34830584

ABSTRACT

Transcutaneous spinal cord stimulation (TSCS) has demonstrated potential to beneficially modulate spinal cord motor and autonomic circuitry. We are interested in pairing cervical TSCS with other forms of nervous system stimulation to enhance synaptic plasticity in circuits serving hand function. We use a novel configuration for cervical TSCS in which the anode is placed anteriorly over ~C4-C5 and the cathode posteriorly over ~T2-T4. We measured the effects of single pulses of TSCS paired with single pulses of motor cortex or median nerve stimulation timed to arrive at the cervical spinal cord at varying intervals. In 13 participants with and 15 participants without chronic cervical spinal cord injury, we observed that subthreshold TSCS facilitates hand muscle responses to motor cortex stimulation, with a tendency toward greater facilitation when TSCS is timed to arrive at cervical synapses simultaneously or up to 10 milliseconds after cortical stimulus arrival. Single pulses of subthreshold TSCS had no effect on the amplitudes of median H-reflex responses or F-wave responses. These findings support a model in which TSCS paired with appropriately timed cortical stimulation has the potential to facilitate convergent transmission between descending motor circuits, segmental afferents, and spinal motor neurons serving the hand. Studies with larger numbers of participants and repetitively paired cortical and spinal stimulation are needed.

13.
Spinal Cord ; 59(8): 885-893, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34099882

ABSTRACT

DESIGN: Prospective cohort study. OBJECTIVES: We aim to better understand the silent period (SP), an inhibitory counterpart to the well-known motor evoked potential (MEP) elicited by transcranial magnetic stimulation (TMS), in individuals with spinal cord injury (SCI). SETTING: Veterans Affairs Hospital in New York. METHODS: EMG responses were measured in the target abductor pollicis brevis at rest (TMS at 120% of resting motor threshold (RMT)) and during maximal effort (TMS at 110% of RMT). Participants with chronic cervical SCI (n = 9) and AB participants (n = 12) underwent between 3 and 7 sessions of testing on separate days. The primary outcomes were the magnitude and reliability of SP duration, resting and active MEP amplitudes, and RMT. RESULTS: SCI participants showed significantly lower MEP amplitudes compared to AB participants. SCI SP duration was not significantly different from AB SP duration. SP duration demonstrated reduced intra-participant variability within and across sessions compared with MEP amplitudes. SCI participants also demonstrated a higher prevalence of SP 'interruptions' compared to AB participants. CONCLUSIONS: In a small group of individuals with chronic cervical SCI, we confirmed the well-known findings that SCI individuals have lower TMS evoked potential amplitudes and a tendency toward higher TMS motor thresholds relative to able-bodied controls. We did not observe a significant difference in SP duration between individuals with versus without SCI. However, SP duration is a more reliable outcome within and across multiple sessions than MEP amplitude.


Subject(s)
Spinal Cord Injuries , Electromyography , Evoked Potentials, Motor , Humans , Muscle, Skeletal , Prospective Studies , Reproducibility of Results , Spinal Cord Injuries/diagnosis , Transcranial Magnetic Stimulation
14.
Neuromodulation ; 24(3): 405-415, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33794042

ABSTRACT

STUDY DESIGN: This is a narrative review focused on specific challenges related to adequate controls that arise in neuromodulation clinical trials involving perceptible stimulation and physiological effects of stimulation activation. OBJECTIVES: 1) To present the strengths and limitations of available clinical trial research designs for the testing of epidural stimulation to improve recovery after spinal cord injury. 2) To describe how studies can control for the placebo effects that arise due to surgical implantation, the physical presence of the battery, generator, control interfaces, and rehabilitative activity aimed to promote use-dependent plasticity. 3) To mitigate Hawthorne effects that may occur in clinical trials with intensive supervised participation, including rehabilitation. MATERIALS AND METHODS: Focused literature review of neuromodulation clinical trials with integration to the specific context of epidural stimulation for persons with chronic spinal cord injury. CONCLUSIONS: Standard of care control groups fail to control for the multiple effects of knowledge of having undergone surgical procedures, having implanted stimulation systems, and being observed in a clinical trial. The irreducible effects that have been identified as "placebo" require sham controls or comparison groups in which both are implanted with potentially active devices and undergo similar rehabilitative training.


Subject(s)
Spinal Cord Injuries , Spinal Cord Stimulation , Clinical Trials as Topic , Epidural Space , Humans , Spinal Cord , Spinal Cord Injuries/therapy
15.
Spinal Cord Ser Cases ; 7(1): 20, 2021 03 12.
Article in English | MEDLINE | ID: mdl-33712561

ABSTRACT

STUDY DESIGN: Pre-post intervention. OBJECTIVE: To explore the potential effect of exoskeletal-assisted walking (EAW) on seated balance for persons with chronic motor complete spinal cord injury (SCI). SETTING: A SCI research center. METHODS: Eight participants who were over 18 years of age with chronic SCI and used a wheelchair for mobility were enrolled. Seven able-bodied participants were used for normal seated balance comparative values. Participants with chronic SCI received supervised EAW training using a powered exoskeleton (ReWalkTM) for a median 30 sessions (range from 7 to 90 sessions). Before and after EAW training, seated balance testing outcomes were collected using computerized dynamic posturography, providing measurements of endpoint excursion (EPE), maximal excursion (MXE), and directional control (DCL). Modified functional reach test (MFRT) and the sub-scales of physical functioning and role limitations due to physical health from the Short Form (36) Health Survey (SF-36) were used to identify changes in functional activities. RESULTS: After EAW training, seated balance significantly improved in total-direction EPE and MXE (P < 0.01 and P < 0.017 respectively). The results of MFRT and sub-scales of physical functioning and role limitations due to physical health improved after EAW training but were not statistically significant. CONCLUSIONS: EAW training may have the potential to improve seated balance for persons with chronic motor complete SCI. Due to the limitations of the study, such as small sample size and lack of a control group, further studies are needed to clarify the effect of improving seated balance through EAW training.


Subject(s)
Exoskeleton Device , Spinal Cord Injuries , Adolescent , Adult , Humans , Pilot Projects , Postural Balance , Walking
16.
Sensors (Basel) ; 21(4)2021 Feb 07.
Article in English | MEDLINE | ID: mdl-33562342

ABSTRACT

Sensory feedback from wearables can be effective to learn better movement through enhanced information and engagement. Facilitating greater user cognition during movement practice is critical to accelerate gains in motor function during rehabilitation following brain or spinal cord trauma. This preliminary study presents an approach using an instrumented glove to leverage sense of agency, or perception of control, to provide training feedback for functional grasp. Seventeen able-bodied subjects underwent training and testing with a custom-built sensor glove prototype from our laboratory. The glove utilizes onboard force and flex sensors to provide inputs to an artificial neural network that predicts achievement of "secure" grasp. Onboard visual and audio feedback was provided during training with progressively shorter time delay to induce greater agency by intentional binding, or perceived compression in time between an action (grasp) and sensory consequence (feedback). After training, subjects demonstrated a significant reduction (p < 0.05) in movement pathlength and completion time for a functional task involving grasp-move-place of a small object. Future work will include a model-based algorithm to compute secure grasp, virtual reality immersion, and testing with clinical populations.


Subject(s)
Hand Strength , Hand , Feedback , Feedback, Sensory , Humans , Movement
17.
F1000Res ; 10: 464, 2021.
Article in English | MEDLINE | ID: mdl-35342620

ABSTRACT

​​​​​​ Background: Most spinal cord injuries (SCI) are not full transections, indicating that residual nerve circuits are retained. Rehabilitation interventions have been shown to beneficially reorganize motor pathways in the brain, corticospinal tract, and at the spinal level. However, rehabilitation training require a large number of repetitions, and intervention effects may be absent or show transient retention. Therefore, the need remains for an effective approach to synergistically improve the amount and duration of neuroplasticity in combination with other interventions. Remote ischemic conditioning (RIC) demonstrates several potential advantages as a candidate for such an approach. Therefore, we propose a protocol to investigate RIC coupled with physical training to promote neuroplasticity in hand muscles. Methods: This will be a prospective randomized-order crossover trial to be performed in eight able-bodied participants and eight participants with chronic cervical SCI. Patients will participate in two experimental sessions consisting of either active or sham RIC preceding a bout of pinch movement exercise. Serial evaluations will be conducted at baseline, after RIC, immediately after pinch exercise, and follow up 15-minutes later. The primary outcome is the change in corticospinal excitability (primarily measured by the motor evoked potential of abductor pollicis brevis muscle). Secondary outcomes will include maximal volitional pinch force, and inflammatory biomarkers. To ensure safety, we will monitor tolerability and hemodynamic responses during RIC. Discussion: This protocol will be the first to test RIC in people with cervical SCI and to investigate whether RIC alters corticospinal excitability. By sharing the details of our protocol, we hope other interested researchers will seek to investigate similar approaches - depending on overlap with the current study and mutual sharing of participant-level data, this could increase the sample size, power, and generalizability of the analysis and results. Trial registration: ClinicalTrial.gov, ID: NCT03851302; Date of registration: February 22, 2019.


Subject(s)
Spinal Cord Injuries , Cross-Over Studies , Evoked Potentials, Motor , Humans , Prospective Studies , Pyramidal Tracts , Randomized Controlled Trials as Topic , Spinal Cord Injuries/therapy
18.
Telemed J E Health ; 27(3): 239-246, 2021 03.
Article in English | MEDLINE | ID: mdl-32326849

ABSTRACT

Background: Stroke is the leading cause of serious long-term disability in the United States. Barriers to rehabilitation include cost, transportation, lack of trained personnel, and equipment. Telerehabilitation (TR) has emerged as a promising modality to reduce costs, improve accessibility, and retain patient independence. TR allows providers to remotely administer therapy, potentially increasing access to underserved regions. Objectives: To describe types of stroke rehabilitation therapy delivered through TR and to evaluate whether TR is as effective as traditional in-person outpatient therapy in improving satisfaction and poststroke residual deficits such as motor function, speech, and disability. Methods: A literature search of the term "telerehabilitation and stroke" was conducted across three databases. Full-text articles with results pertaining to TR interventions were reviewed. Articles were scored for methodological quality using the PEDro scale. Results: Thirty-four articles with 1,025 patients were included. Types of TR included speech therapy, virtual reality (VR), robotic, community-based, goal setting, and motor training exercises. Frequently measured outcomes included motor function, speech, disability, and satisfaction. All 34 studies reported improvement from baseline after TR therapy. PEDro scores ranged from 2 to 8 with a mean of 4.59 ± 1.94 (on a scale of 0-10). Studies with control interventions, randomized allocation, and blinded assessment had significantly higher PEDro scores. All 15 studies that compared TR with traditional therapy showed equivalent or better functional outcomes. Home-based robotic therapy and VR were less costly than in-person therapy. Patient satisfaction with TR and in-person clinical therapy was similar. Conclusions: TR is less costly and equally as effective as clinic-based rehabilitation at improving functional outcomes in stroke patients. TR produces similar patient satisfaction. TR can be combined with other therapies, including VR, speech, and robotic assistance, or used as an adjuvant to direct in-person care.


Subject(s)
Stroke Rehabilitation , Stroke , Telerehabilitation , Virtual Reality , Exercise Therapy , Humans
19.
Semin Neurol ; 40(5): 550-559, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32906175

ABSTRACT

Spinal cord injury (SCI) disrupts autonomic circuits and impairs synchronistic functioning of the autonomic nervous system, leading to inadequate cardiovascular regulation. Individuals with SCI, particularly at or above the sixth thoracic vertebral level (T6), often have impaired regulation of sympathetic vasoconstriction of the peripheral vasculature and the splanchnic circulation, and diminished control of heart rate and cardiac output. In addition, impaired descending sympathetic control results in changes in circulating levels of plasma catecholamines, which can have a profound effect on cardiovascular function. Although individuals with lesions below T6 often have normal resting blood pressures, there is evidence of increases in resting heart rate and inadequate cardiovascular response to autonomic provocations such as the head-up tilt and cold face tests. This manuscript reviews the prevalence of cardiovascular disorders given the level, duration and severity of SCI, the clinical presentation, diagnostic workup, short- and long-term consequences, and empirical evidence supporting management strategies to treat cardiovascular dysfunction following a SCI.


Subject(s)
Autonomic Nervous System Diseases , Blood Pressure , Cardiovascular Diseases , Heart Rate , Parasympathetic Nervous System , Spinal Cord Injuries , Sympathetic Nervous System , Autonomic Nervous System Diseases/diagnosis , Autonomic Nervous System Diseases/epidemiology , Autonomic Nervous System Diseases/etiology , Autonomic Nervous System Diseases/therapy , Blood Pressure/physiology , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology , Cardiovascular Diseases/therapy , Heart Rate/physiology , Humans , Parasympathetic Nervous System/physiopathology , Spinal Cord Injuries/complications , Spinal Cord Injuries/diagnosis , Spinal Cord Injuries/epidemiology , Spinal Cord Injuries/therapy , Sympathetic Nervous System/physiopathology
20.
Neurology ; 94(13): e1395-e1406, 2020 03 31.
Article in English | MEDLINE | ID: mdl-32102980

ABSTRACT

OBJECTIVE: To test the hypothesis that higher-challenge gait and balance tasks are more sensitive than traditional metrics to subtle patient-reported gait dysfunction and future fall risk in early multiple sclerosis (MS). METHODS: Persons with early MS (n = 185; ≤5 years diagnosed) reported gait function (MS Walking Scale) and underwent traditional disability metrics (Expanded Disability Status Scale [EDSS], Timed 25 Foot Walk). Patients and healthy controls (n = 50) completed clinically feasible challenge tasks of gait endurance (2-Minute Walk Test), standing balance (NIH Toolbox), and dynamic balance (balance boards; tandem walk on 2 ten-foot boards of different widths, 4.5 and 1.5 in). MRI assessed global and regional brain volumes, total T2 lesion volume (T2LV), infratentorial T2LVs and counts, and cervical cord lesion counts. Falls, near falls, and fall-related injuries were assessed after 1 year. We examined links between all tasks and patient-reported gait, MRI markers, and fall data. RESULTS: Patients performed worse on higher challenge balance, but not gait, tasks compared with healthy controls. Worse patient-reported gait disturbance was associated with worse performance on all tasks, but only dynamic balance was sensitive to mild patient-reported gait difficulty. Balance tasks were more correlated with MRI metrics than were walking tasks or EDSS score. Thirty percent of patients reported either a fall or near fall after 1 year, with poor dynamic balance as the only task independently predicting falls. CONCLUSIONS: Balance plays a leading role in gait dysfunction early in MS. Clinically feasible higher-challenge balance tasks were most sensitive to patient-reported gait, MRI disease markers, and risk of future falls, highlighting potential to advance functional outcomes in clinical practice and trials.


Subject(s)
Accidental Falls , Gait Analysis/methods , Gait Disorders, Neurologic/diagnosis , Gait Disorders, Neurologic/etiology , Multiple Sclerosis, Relapsing-Remitting/complications , Adult , Demyelinating Diseases/complications , Disability Evaluation , Female , Humans , Male , Middle Aged , Postural Balance/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...