Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Environ Microbiol ; 82(5): 1468-1474, 2015 Dec 28.
Article in English | MEDLINE | ID: mdl-26712541

ABSTRACT

Polychromatic UV irradiation is a common method of pathogen inactivation in the water treatment industry. To improve its disinfection efficacy, more information on the mechanisms of UV inactivation on microorganisms at wavelengths throughout the germicidal UV spectrum, particularly at below 240 nm, is necessary. This work examined UV inactivation of bacteriophage MS2, a common surrogate for enteric pathogens, as a function of wavelength. The bacteriophage was exposed to monochromatic UV irradiation from a tunable laser at wavelengths of between 210 nm and 290 nm. To evaluate the mechanisms of UV inactivation throughout this wavelength range, RT-qPCR (reverse transcription-quantitative PCR) was performed to measure genomic damage for comparison with genomic damage at 253.7 nm. The results indicate that the rates of RNA damage closely mirror the loss of viral infectivity across the germicidal UV spectrum. This demonstrates that genomic damage is the dominant cause of MS2 inactivation from exposure to germicidal UV irradiation. These findings contrast those for adenovirus, for which MS2 is used as a viral surrogate for validating polychromatic UV reactors.


Subject(s)
Levivirus/physiology , Levivirus/radiation effects , Microbial Viability/radiation effects , RNA, Viral/radiation effects , Ultraviolet Rays , Disinfection/methods , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Water Microbiology , Water Purification/methods
2.
Water Res ; 70: 27-37, 2015 Mar 01.
Article in English | MEDLINE | ID: mdl-25506761

ABSTRACT

Ultraviolet (UV) reactors used for disinfecting water and wastewater must be validated and monitored over time. The validation process requires understanding the photochemical properties of the pathogens of concern and the challenge microorganisms used to represent them. Specifically for polychromatic UV systems, the organisms' dose responses to UV light and their sensitivity across the UV spectrum must be known. This research measured the UV spectral sensitivity, called action spectra, of Cryptosporidium parvum, and MS2, T1UV, Q Beta, T7, and T7m Coliphages, as well as Bacillus pumilus spores. A tunable laser from the National Institute of Standards and Technology was used to isolate single UV wavelengths at 10 nm intervals between 210 and 290 nm. Above 240 nm, all bacteria and viruses tested exhibited a relative peak sensitivity between 260 and 270 nm. Of the coliphage, MS2 exhibited the highest relative sensitivity below 240 nm, relative to its sensitivity at 254 nm, followed by Q Beta, T1UV, T7m and T7 coliphage. B. pumilus spores were more sensitive to UV light at 220 nm than any of the coliphage. These spectra are required for calculating action spectra correction factors for medium pressure UV system validation, for matching appropriate challenge microorganisms to pathogens, and for improving UV dose monitoring. Additionally, understanding the dose response of these organisms at multiple wavelengths can improve polychromatic UV dose calculations and enable prediction of pathogen inactivation from wavelength-specific disinfection technologies such as UV light emitting diodes (LEDs).


Subject(s)
Disinfection , Ultraviolet Rays , Water Microbiology , Cryptosporidium parvum/radiation effects , Pressure
3.
Environ Sci Technol ; 48(1): 591-8, 2014.
Article in English | MEDLINE | ID: mdl-24266597

ABSTRACT

Adenovirus is regarded as the most resistant pathogen to ultraviolet (UV) disinfection due to its demonstrated resistance to monochromatic, low-pressure (LP) UV irradiation at 254 nm. This resistance has resulted in high UV dose requirements for all viruses in regulations set by the United States Environmental Protection Agency. Polychromatic, medium-pressure (MP) UV irradiation has been shown to be much more effective than 254 nm, although the mechanisms of polychromatic UV inactivation are not completely understood. This research analyzes the wavelength-specific effects of UV light on adenovirus type 2 by analyzing in parallel the reduction in viral infectivity and damage to the viral genome. A tunable laser from the National Institute of Standards and Technology was used to isolate single UV wavelengths. Cell culture infectivity and PCR were employed to quantify the adenoviral inactivation rates using narrow bands of irradiation (<1 nm) at 10 nm intervals between 210 and 290 nm. The inactivation rate corresponding to adenoviral genome damage matched the inactivation rate of adenovirus infectivity at 253.7 nm, 270 nm, 280 nm, and 290 nm, suggesting that damage to the viral DNA was primarily responsible for loss of infectivity at those wavelengths. At 260 nm, more damage to the nucleic acid was observed than reduction in viral infectivity. At 240 nm and below, the reduction of viral infectivity was significantly greater than the reduction of DNA amplification, suggesting that UV damage to a viral component other than DNA contributed to the loss of infectivity at those wavelengths. Inactivation rates were used to develop a detailed spectral sensitivity or action spectrum of adenovirus 2. This research has significant implications for the water treatment industry with regard to polychromatic inactivation of viruses and the development of novel wavelength-specific UV disinfection technologies.


Subject(s)
Adenoviridae/radiation effects , DNA Damage , Disinfection/methods , Ultraviolet Rays , Water Purification/methods , Adenoviridae/genetics , Cell Culture Techniques , Cell Line, Tumor , Disinfection/instrumentation , Dose-Response Relationship, Radiation , Humans , Polymerase Chain Reaction , Pressure , Water Purification/instrumentation
4.
J Am Water Works Assoc ; 96(3): 84-93, 2004 Mar.
Article in English | MEDLINE | ID: mdl-32313290

ABSTRACT

Previous evaluations of the effect of ultraviolet (UV) light on Cryptosporidium parvum oocysts have been limited to a single strain-the Iowa strain. This study investigated the response of five strains of C. parvum to UV. A collimated beam apparatus was used to apply controlled doses of monochromatic (254 nm) UV to oocysts of the Iowa, Moredun, Texas A&M, Maine, and Glasgow strains. Irradiation was measured using a calibrated radiometer and sensor. Inactivation was quantified through animal infectivity by inoculation of cohorts of CD-1 neonatal mice with UV-treated and untreated control oocysts of each strain followed by examination of intestinal sections for infection using hemotoxylin and eosin staining. A UV light dose of 10 mJ/cm2 achieved at least 4-log10 inactivation of all strains evaluated. All five strains of C. parvum were shown to be highly susceptible to low levels of UV light.

SELECTION OF CITATIONS
SEARCH DETAIL
...