Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Nanosci Nanotechnol ; 16(1): 229-41, 2016 Jan.
Article in English | MEDLINE | ID: mdl-27398449

ABSTRACT

Gold Nanospheres (AuNS) have been widely explored as an emerging system for various biomedical applications including drug delivery, bioimaging and photomedicine. However, method of synthesizing nanoparticles and its toxicity including bioaccumulation has been a problem of concern. In the present study, we explored the appropriateness of 12.0 ±1.99 nm chitosan reduced AuNS in vivo models with respect to its bioavailability and toxicity against various concentrations (2.5-7.5 mg/kg). Administration of AuNS did not show any signs of morbidity. Inductively coupled plasma optical emission spectrometry (ICP-OES) analysis of blood (0.156 ± 0.154), urine (0.084 ± 0.08) and tissues indicates gradual dissipation and obligatory clearance within 24 h time interval. Nevertheless, pres- ence of AuNS in blood after 24 h confirms the bioavailability of AuNS demonstrating the evidence for no immune clearance and efficient tissue uptake. Further, brain shows the lowest quantity of injected AuNS. From this result, we determine this chitosan monolayer protected AuNS could cross the blood brain barrier and enter to the neural tissues. Interestingly there was no evidence of toxicity in any of the organs. In conclusion, our data suggest that AuNS injected though tail vain were easily taken up by tissues and does not produce sub-acute physiological damage even at high concentrations tested, supporting chitosan reduced AuNS as biocompatible, nontoxic nanoconjugates for targeted drug delivery and other biomedical applications.


Subject(s)
Blood-Brain Barrier/metabolism , Chitosan , Drug Delivery Systems/methods , Gold , Materials Testing , Nanospheres/chemistry , Animals , Chitosan/chemistry , Chitosan/pharmacokinetics , Chitosan/pharmacology , Colloids/chemistry , Colloids/pharmacokinetics , Colloids/pharmacology , Gold/chemistry , Gold/pharmacokinetics , Gold/pharmacology , Male , Mice
2.
J Mater Chem B ; 1(7): 1010-1018, 2013 Feb 21.
Article in English | MEDLINE | ID: mdl-32262365

ABSTRACT

Theranostic nanoparticles with multifunctional ability have been emerging as a new platform for biomedical applications such as imaging, sensing and drug delivery. Despite gold nanorods (Au NRs) being an excellent nanosource with multifunctional versatility, they have certain limitations in biomedical applications, which include surfactant toxicity, biological stability and controlled drug release kinetics. Herein, we have developed Au NR-doxorubicin conjugates (DOX@PSS-Au NR) with improved drug loading efficiency (55 ± 6%) and minimum CTAB toxicity, by employing Au NRs (4.4 ± 0.5 aspect ratio) coated with poly(sodium 4-styrenesulfonate) (PSS). DOX@PSS-Au NR conjugates exhibited higher biological stability with sustained drug release kinetics at pH 5. The binding events of DOX molecules onto the PSS coated gold nanorods (PSS-Au NRs) were monitored through fluorescence quenching and the longitudinal surface plasmon resonance signals. Furthermore the anti-cancer potential and apoptosis inducing efficiency of DOX@PSS-Au NR conjugates in MCF-7 cells revealed higher therapeutic efficiency than free DOX, as corroborated through morphological assessment and in vitro cytotoxicity assay. In addition, DOX@PSS-Au NR conjugates showed efficient cellular entry and uniform intracellular distribution, suggesting the augmenting effect of chemotherapeutic drugs by Au NRs. Thus DOX@PSS-Au NR conjugates demonstrate significant therapeutic potential, suggesting their potential in anticancer therapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...