Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
Add more filters










Publication year range
1.
Org Biomol Chem ; 22(17): 3510-3517, 2024 05 01.
Article in English | MEDLINE | ID: mdl-38619422

ABSTRACT

Post-synthetic conversion of the trifluoromethyl group to a heteroaryl group at the C5 position of the pyrimidine base in DNA oligonucleotides was achieved. Specifically, the oligonucleotides containing 5-trifluoromethylpyrimidine bases were treated with o-phenylenediamines and o-aminothiophenols as nucleophiles to afford the corresponding 5-(benzimidazol-2-yl)- and 5-(benzothiazol-2-yl)-pyrimidine-modified bases. Furthermore, evaluation of the fluorescence properties of the obtained oligonucleotides revealed that among them the oligonucleotide containing 5-(5-methylbenzimidazol-2-yl)cytosine exhibited the highest fluorescence intensity. These results indicated that post-synthetic trifluoromethyl conversion, which is practical and operationally simple, is a powerful tool for exploring functional oligonucleotides.


Subject(s)
Fluorescent Dyes , Oligonucleotides , Pyrimidines , Pyrimidines/chemistry , Pyrimidines/chemical synthesis , Oligonucleotides/chemistry , Oligonucleotides/chemical synthesis , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Molecular Structure
2.
Curr Protoc ; 4(3): e1013, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38483118

ABSTRACT

Universal solid supports are widely used in solid-phase oligonucleotide (ON) synthesis based on phosphoramidite chemistry. Herein, we describe the synthesis of hydrophobic universal linkers, namely phenanthrene ring-fused 7-oxabicyclo[2.2.1]heptane-2,3-diol derivatives (PT linkers), their coupling to solid supports [e.g., controlled pore glass (CPG) and polystyrene (PS)], and the use of the resulting PT-linker-modified solid supports in ON synthesis. PT linkers were synthesized in four steps from commercial materials and subsequently attached to CPG and PS resins through succinyl and diethylene glycol-containing spacers, respectively. Cleavage of the desired ON from the resins was accomplished under standard basic conditions, indicating that the reactivity of the PT linkers was comparable to that of conventional universal linkers. Furthermore, owing to their high hydrophobicity, the desired ON could be readily separated from impurities originating from the PT linker by reversed phase HPLC. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Synthesis of phenanthrene ring-fused 7-oxabicyclo[2.2.1]heptane-2,3-diol (PT linker) derivatives Basic Protocol 2: Preparation of PT-linker-modified CPG and PS resins Basic Protocol 3: Solid-phase ON synthesis using PT-linker-modified solid supports and cleavage of ONs from resins.


Subject(s)
Heptanes , Oligonucleotides , Oligonucleotides/chemistry , Hydrophobic and Hydrophilic Interactions
3.
ChemMedChem ; 18(21): e202300348, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37704578

ABSTRACT

Psoralen-conjugated triplex-forming oligonucleotides (Ps-TFOs) have been utilized for genome editing and anti-gene experiments for over thirty years. However, the research on Ps-TFOs employing artificial nucleotides is still limited, and their photo-crosslinking properties have not been thoroughly investigated in relation to biological activities. In this study, we extensively examined the photo-crosslinking properties of Ps-TFOs to provide fundamental insights for future Ps-TFO design. We developed novel Ps-TFOs containing 2'-O,4'-C-methylene-bridged nucleic acids (Ps-LNA-mixmer) and investigated their photo-crosslinking properties using stable cell lines that express firefly luciferase constitutively to evaluate the anti-gene activities of Ps-LNA-mixmer. As a result, Ps-LNA-mixmer successfully demonstrated suppression activity, and we presented the first-ever correlation between photo-crosslinking properties and their activities. Our findings also indicate that the photo-crosslinking process is insufficient under cell irradiation conditions (365 nm, 2 mW/cm2 , 60 min). Therefore, our results highlight the need to develop new psoralen derivatives that are more reactive under cell irradiation conditions.


Subject(s)
Nucleic Acids , Oligonucleotides , Oligonucleotides/pharmacology , Ficusin/pharmacology , DNA/metabolism , Cell Line
4.
Curr Protoc ; 3(7): e837, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37494600

ABSTRACT

This article describes the postsynthetic modification of oligonucleotides (ONs) containing 2'-deoxy-5-fluoromethyluridine (dUCH2F ) and 2'-deoxy-5-difluoromethyluridine (dUCHF2 ). Reactions of fully protected and controlled pore glass (CPG)-attached ONs containing dUCH2F and dUCHF2 in basic solutions result in deprotection of all protecting groups except for the 4,4'-dimethoxytrityl group, cleavage from CPG, and conversion of the fluoromethyl or difluoromethyl groups to afford the corresponding ONs containing 5-substituted 2'-deoxyuridines. Moreover, the difluoromethyl group can be converted to formyl, oxime, or hydrazone via the postsynthetic conversion of protection- and CPG-free ON containing dUCHF2 . © 2023 Wiley Periodicals LLC. Basic Protocol 1: Synthesis of fully protected and CPG-attached oligonucleotides containing 2'-deoxy-5-fluoromethyluridine and 2'-deoxy-5-difluoromethyluridine Basic Protocol 2: Postsynthetic modification of fully protected and CPG-attached oligonucleotides containing 2'-deoxy-5-fluoromethyluridine Basic Protocol 3: Postsynthetic modification of fully protected and CPG-attached oligonucleotide containing 2'-deoxy-5-difluoromethyluridine Basic Protocol 4: Postsynthetic modification of protection- and CPG-free oligonucleotide containing 2'-deoxy-5-difluoromethyluridine Support Protocol: Synthesis of 2'-deoxy-5-fluoromethyluridine and 2'-deoxy-5-difluoromethyluridine phosphoramidites.


Subject(s)
Oligonucleotides , Uracil
5.
Org Biomol Chem ; 21(25): 5203-5213, 2023 06 28.
Article in English | MEDLINE | ID: mdl-37309204

ABSTRACT

We previously reported that pyrimidine derivatives of methylated 2'-O,4'-C-methyleneoxy-bridged nucleic acid (Me-TaNA), a unique consecutive three-acetal-containing nucleic acid, are promising building blocks for chemically modified oligonucleotides. Herein, purine derivatives of Me-TaNA (Me-TaNA-A and -G) were synthesized and introduced into oligonucleotides. During the synthesis, we found stereoselective introduction of a substituent on the 4' carbons by using 2',3'-carbonate compounds as substrates. When forming duplexes with single-stranded RNA, the modified oligonucleotides, including purine derivatives of Me-TaNA, showed higher duplex stability than the natural oligonucleotide. This study enabled the use of Me-TaNA for the chemical modification of various oligonucleotide sequences because synthesis of Me-TaNAs with all four nucleobases was achieved.


Subject(s)
Nucleic Acids , Oligonucleotides , Oligonucleotides/chemistry , Nucleic Acids/chemistry , RNA/chemistry , Purines , Nucleic Acid Conformation
6.
J Org Chem ; 88(5): 2726-2734, 2023 03 03.
Article in English | MEDLINE | ID: mdl-36812161

ABSTRACT

In solid-phase oligonucleotide synthesis, a solid support modified with a universal linker is frequently used to prepare oligonucleotides bearing non-natural- or non-nucleosides at the 3'-end. Generally, harsh basic conditions such as hot aqueous ammonia or methylamine are required to release oligonucleotides by 3'-dephosphorylation via the formation of cyclic phosphate with the universal linker. To achieve 3'-dephosphorylation under milder conditions, we used O-alkyl phosphoramidites instead of the commonly used O-cyanoethyl phosphoramidites at the 3'-end of oligonucleotides. Alkylated phosphotriesters are more alkali-tolerant than their cyanoethyl counterparts because the latter generates phosphodiesters via E2 elimination under basic conditions. Among the designed phosphoramidites, alkyl-extended analogs exhibited rapid and efficient 3'-dephosphorylation compared to conventional cyanoethyl and methyl analogs under mild basic conditions such as aqueous ammonia at room temperature for 2 h. Moreover, nucleoside phosphoramidites bearing 1,2-diols were synthesized and incorporated into oligonucleotides. 1,2,3,4-Tetrahydro-1,4-epoxynaphthalene-2,3-diol-bearing phosphoramidite behaved like a universal linker at the 3'-terminus, allowing dephosphorylation and strand cleavage of the oligonucleotide chain to occur efficiently. Our strategy using this new phosphoramidite chemistry is promising for the tandem solid-phase synthesis of diverse oligonucleotides.


Subject(s)
Ammonia , Oligonucleotides , Organophosphorus Compounds , Nucleosides
7.
Org Lett ; 24(41): 7696-7700, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36214750

ABSTRACT

The rapid and facile generation of 4'-carbon radicals from oxime imidates of nucleosides via 1,5-hydrogen atom transfer induced by iminyl radicals was developed. The cyclization of 4'-carbon radicals with olefins, followed by the hydrolysis of imidate residues, provided various 2'-O,4'-C- and 3'-O,4'-C-bridged nucleosides. This operationally simple approach can be applied to the few-step syntheses of 6'S-methyl-2'-O,4'-C-ethylene-bridged 5-methyluridine (6'S-Me-ENA-T) and S-constrained ethyl-bridged 5-methyluridine (S-cEt-T).


Subject(s)
Hydrogen , Nucleosides , Carbon , Ethylenes/chemistry , Alkenes , Oximes , Imidoesters
8.
J Org Chem ; 87(17): 11743-11750, 2022 09 02.
Article in English | MEDLINE | ID: mdl-35960869

ABSTRACT

In this study, 2'-O,4'-C-methyleneoxy-bridged nucleic acid, a unique consecutive three-acetal-containing nucleic acid (TaNA), was designed. Pyrimidine derivatives of methylated TaNA (Me-TaNA) were also synthesized and introduced into oligonucleotides via solid-phase synthesis. The Me-TaNA-modified oligonucleotides exhibited higher stabilities when forming duplexes with single-stranded RNA or triplexes with double-stranded DNA, relative to the natural oligonucleotides and modified oligonucleotides containing another 2',4'-bridged 5-methyluridine, such as 2',4'-BNA/LNA and 2',4'-ENA. Furthermore, Me-TaNA within oligonucleotides significantly enhanced nuclease resistance.


Subject(s)
Nucleic Acids , Oligonucleotides , DNA , Nucleic Acid Conformation , Pyrimidines , RNA
9.
Chem Rec ; 22(5): e202100325, 2022 May.
Article in English | MEDLINE | ID: mdl-35119181

ABSTRACT

Oligonucleotides containing modified nucleobases have applications in various technologies. In general, to synthesize oligonucleotides with different nucleobase structures, each modified phosphoramidite monomer needs to be prepared over multiple steps and then introduced onto the oligonucleotides, which is time-consuming and inefficient. Post-synthetic modification is a powerful strategy for preparing many types of modified oligonucleotides, especially nucleobase-modified ones. Depending on the stage of modification, post-synthetic modification can be divided into two stages: "solid-phase modification," wherein an oligonucleotide attaches to the resin, and "solution-phase modification," wherein an oligonucleotide detaches itself from the resin. In this review, we focus on post-synthetic modification in solution for the synthesis of nucleobase-modified oligonucleotides, except the modifications to linkers for conjugation. Moreover, the reactions are summarized for each modified position of the nucleobases.


Subject(s)
Oligonucleotides , Oligonucleotides/chemistry
10.
Bioorg Med Chem ; 31: 115966, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33387694

ABSTRACT

Thymidine derivatives bearing spiroacetal moieties on the C4'-position (5'R-spiro-thymidine and 5'S-spiro-thymidine) were synthesized and incorporated into oligonucleotides. The duplex- and triplex-forming abilities of both the oligonucleotides were evaluated from UV melting experiments. Oligonucleotides with the 5'S-spiro modifications could form thermally stable duplexes with complementary RNA and DNA; however, the 5'R-spiro modification significantly decreased the thermal stabilities of the duplexes and triplexes. Oligonucleotides with these spiro-thymidines showed significantly high resistance towards enzymatic degradation.


Subject(s)
Oligonucleotides/chemistry , Spiro Compounds/chemistry , Thymidine/chemistry , Molecular Structure , Oligonucleotides/chemical synthesis
11.
Chemistry ; 27(7): 2427-2438, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33280173

ABSTRACT

Artificial nucleic acids are widely used in various technologies, such as nucleic acid therapeutics and DNA nanotechnologies requiring excellent duplex-forming abilities and enhanced nuclease resistance. 2'-O,4'-C-Methylene-bridged nucleic acid/locked nucleic acid (2',4'-BNA/LNA) with 1,3-diaza-2-oxophenoxazine (BNAP (BH )) was previously reported. Herein, a novel BH analogue, 2',4'-BNA/LNA with 9-(2-aminoethoxy)-1,3-diaza-2-oxophenoxazine (G-clamp), named BNAP-AEO (BAEO ), was designed. The BAEO nucleoside was successfully synthesized and incorporated into oligodeoxynucleotides (ODNs). ODNs containing BAEO possessed up to 104 -, 152-, and 11-fold higher binding affinities for complementary (c) RNA than those of ODNs containing 2'-deoxycytidine (C), 2',4'-BNA/LNA with 5-methylcytosine (L), or 2'-deoxyribonucleoside with G-clamp (PAEO ), respectively. Moreover, duplexes formed by ODN bearing BAEO with cDNA and cRNA were thermally stable, even under molecular crowding conditions induced by the addition of polyethylene glycol. Furthermore, ODN bearing BAEO was more resistant to 3'-exonuclease than ODNs with phosphorothioate linkages.


Subject(s)
Exonucleases/metabolism , Nucleic Acids/chemistry , Oligonucleotides/chemistry , Oxazines/chemistry , Bridged-Ring Compounds , Nucleic Acids/metabolism , Oligonucleotides/metabolism , Oxazines/metabolism , RNA/chemistry
12.
Article in English | MEDLINE | ID: mdl-31983279

ABSTRACT

An Ir(III) polypyridyl complex-conjugated 14-mer oligonucleotide (IrIII-DNA) was synthesized and its hybridization properties with single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) were evaluated by UV-melting experiments. The stabilities of the duplexes of IrIII-DNA with 14-, 20-, and 26-mer ssDNAs were higher than those of the unconjugated oligonucleotides. The triplex of IrIII-DNA with 14-mer dsDNA was also stabilized. However, the triplexes of IrIII-DNA with 20- and 26-mer dsDNAs, flanked by 3 and 6 base pairs at the both ends of 14-mer dsDNA target, were destabilized. This is presumably because of steric repulsion between the Ir(III) complex and the protruding 3- and 6-mer dsDNA moieties which are inflexible compared to ssDNA.


Subject(s)
Chemistry Techniques, Synthetic , Iridium/chemistry , Nucleic Acid Hybridization , Oligonucleotides/chemistry , DNA Probes , Magnetic Resonance Spectroscopy , Molecular Structure , Nucleic Acid Conformation , Oligonucleotides/chemical synthesis , Oligonucleotides/radiation effects
13.
Molecules ; 25(2)2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31952133

ABSTRACT

The post-synthetic modification of an oligonucleotide is a powerful strategy for the synthesis of various analogs of the oligonucleotide, aiming to achieve the desired functions. In this study, we synthesized the thymidine phosphoramidite of 2'-N-pentafluorophenoxycarbonyl-2'-amino-LNA, which was introduced into oligonucleotides. Oligonucleotides containing a 2'-N-pentafluorophenoxycarbonyl-2'-amino-LNA unit could be isolated under ultra-mild deprotection conditions (50 mM K2CO3 in MeOH at room temperature for 4 h). Moreover, by treatment with various amines as a post-synthetic modification, the oligonucleotides were successfully converted into the corresponding 2'-N-alkylaminocarbonyl-2'-amino-LNA (2'-urea-LNA) derivatives. The duplex- and triplex-forming abilities of the synthesized oligonucleotides were evaluated by UV-melting experiments, which showed that 2'-urea-LNAs could stabilize the nucleic acid complexes, similar to the proto-type, 2'-amino-LNA. Thus, 2'-urea-LNAs could be promising units for the modification of oligonucleotides; the design of a substituent on urea may aid the formation of useful oligonucleotides. In addition, pentafluorophenoxycarbonyl, an amino moiety, acted as a precursor of the substituted urea, which may be applicable to the synthesis of oligonucleotide conjugates.


Subject(s)
DNA/chemistry , Oligonucleotides/chemistry , Urea/chemistry , Nucleic Acid Conformation
14.
J Org Chem ; 84(21): 13336-13344, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31565938

ABSTRACT

2',4'-Bridged nucleic acid (2',4'-BNA) analogues are used for therapeutic oligonucleotides, owing to their excellent hybridizing ability with complementary RNA and high resistance toward enzymatic degradation. We developed 2',4'-BNA analogues with oxygen atoms at 6'-positions (e.g., EoNA and EoDNAs) and demonstrated that the presence of 6'-oxygen atoms in the bridge structure could show positive effect on the properties of the modified oligonucleotides. Herein, we designed and synthesized 7'-methyl derivatives of methyleneoxy-bridged 2'-deoxyribonucleic acid (MoDNA), possessing a five-membered bridge with 6'-oxygen atom via radical cyclization for the bridge construction. The synthesized monomers were incorporated into the oligonucleotides by solid-phase oligonucleotide synthesis. The MoDNA-modified oligonucleotides showed high affinity toward single-stranded RNA and double-stranded DNA, as well as excellent resistance toward nuclease compared with the corresponding natural oligonucleotide.


Subject(s)
Oligonucleotides/chemistry , Thymidine/chemistry , Thymidine/chemical synthesis , Base Sequence , Chemistry Techniques, Synthetic , Oligonucleotides/genetics
15.
Curr Protoc Nucleic Acid Chem ; 78(1): e91, 2019 09.
Article in English | MEDLINE | ID: mdl-31529781

ABSTRACT

This unit describes postsynthetic modification of oligonucleotides (ONs) containing 2'-deoxy-5-trifluoromethyluridine and 2'-deoxy-5-trifluoromethylcytidine. In ONs, the trifluoromethyl group at the C5 position of pyrimidine bases is converted into a variety of carboxylic acid equivalents using alkaline and amine solutions. In addition, treating fully protected and controlled pore glass (CPG)-attached ONs with methylamine and sodium hydroxide aqueous solution results in deprotection of all protecting groups (except the 4,4'-dimethoxytrityl group), cleavage from CPG, and simultaneous conversion of the trifluoromethyl group to afford the corresponding ONs containing 5-substituted pyrimidine bases. © 2019 by John Wiley & Sons, Inc.


Subject(s)
Carboxylic Acids/chemistry , Oligonucleotides/chemistry , Pyrimidines/chemistry
16.
J Org Chem ; 84(14): 9093-9100, 2019 07 19.
Article in English | MEDLINE | ID: mdl-31241329

ABSTRACT

The synthesis of 6'S-Me-2'-O,4'-C-ethylene-bridged 5-methyluridine (6'S-Me-ENA-T) was achieved using visible light-mediated stereoselective radical cyclization as a key step. This is the first example of a method for constructing a 2',4'-bridged structure from a 4'-carbon radical intermediate. The 6'S-Me-ENA-T monomer was successfully incorporated into oligonucleotides, and their properties were examined. The oligonucleotides containing 6'S-Me-ENA-T exhibited a highly selective hybridization affinity toward single-stranded RNA and an excellent enzymatic stability, compared to the corresponding LNA- and ENA-modified oligonucleotides.

17.
Methods Mol Biol ; 1973: 59-89, 2019.
Article in English | MEDLINE | ID: mdl-31016696

ABSTRACT

This chapter describes procedures for (1) the synthesis of six 2'-C,4'-C-ethyleneoxy-bridged thymidine phosphoramidites, i.e., methylene-EoDNA-T, (R)-Me-methylene-EoDNA-T, (S)-Me-methylene-EoDNA-T, EoDNA-T, (R)-Me-EoDNA-T, and (S)-Me-EoDNA-T phosphoramidites, (2) the introduction of the phosphoramidites into oligonucleotides, (3) UV-melting experiments of the duplexes of the modified oligonucleotides and complementary RNA, and (4) nuclease degradation experiments of the modified oligonucleotides.


Subject(s)
Bridged Bicyclo Compounds/chemistry , DNA/biosynthesis , DNA/chemistry , Deoxyribonucleases/metabolism , Ethylenes/chemistry , Thymine/chemistry , Enzyme Stability
18.
Bioorg Med Chem ; 27(8): 1728-1741, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30862430

ABSTRACT

We efficiently synthesized 2'-O,4'-C-aminomethylene-bridged nucleic acid (2',4'-BNANC) monomers bearing the four nucleobases, guanine, adenine, thymine, and 5-methylcytosine and incorporated these monomers into oligonucleotides. Initially, we carried out the transglycosylation reaction on several 2'-O-substituted 5-methyluridines to evaluate the effects of 2'-substitutions on this reaction. Under the optimized conditions, purine nucleobases were successfully introduced, and 2',4'-BNANC monomers bearing adenine or guanine were obtained over several steps. In addition, the improved synthesis of the 2',4'-BNANC monomers bearing thymine or 5-methylcytosine was also achieved. The obtained 2',4'-BNANC monomers were subsequently incorporated into oligonucleotides and the duplex-forming abilities of the modified oligonucleotides were investigated. Duplexes containing 2',4'-BNANC monomers in both or either strands were found to possess excellent thermal stabilities.


Subject(s)
5-Methylcytosine/chemistry , Adenine/chemistry , Bridged-Ring Compounds/chemistry , Guanine/chemistry , Nucleotides/chemistry , Oligonucleotides/chemical synthesis , Glycosylation , Oligonucleotides/chemistry , Thymine , Transition Temperature , Ultraviolet Rays
19.
J Org Chem ; 83(18): 10701-10708, 2018 09 21.
Article in English | MEDLINE | ID: mdl-30136574

ABSTRACT

A concise approach for the synthesis of the 5'-carba analogs of nucleoside 5'-phosphates from 2'-deoxy-5'- O-phthalimidonucleosides by a visible-light-mediated deformylative 1,4-addition was developed. This method enabled rapid and facile generation of 4'-carbon radicals of nucleosides. Moreover, this synthetic strategy was applicable to the 5'-carba analogs of nucleoside 5'-phosphates as well as other 5'-carba nucleosides bearing methoxycarbonyl, cyano, and N-methylsulfamoyl groups.

20.
Bioorg Med Chem ; 26(14): 3875-3881, 2018 08 07.
Article in English | MEDLINE | ID: mdl-29861173

ABSTRACT

3',4'-Ethyleneoxy-bridged 5-methyluridine derivatives with methyl groups in the bridge, (R)-Me-3',4'-EoNA-T and (S)-Me-3',4'-EoNA-T, were synthesized, and these two analogs and unsubstituted 3',4'-EoNA-T were successfully incorporated into a 2',5'-linked oligonucleotide (isoDNA). Their duplex-forming ability with complementary DNA and complementary RNA, and triplex-forming ability with double-stranded DNA, were evaluated by UV-melting experiments. The results indicated that isoDNAs, including these 3',4'-EoNA analogs, could hybridize exclusively with complementary RNA. In particular, 3',4'-EoNA-T and (R)-Me-3',4'-EoNA-T modifications within isoDNA could stabilize the duplexes with complementary RNA compared with unmodified or 3',4'-BNA-modified isoDNAs.


Subject(s)
Oligonucleotides/chemical synthesis , Uridine/analogs & derivatives , Nucleic Acid Conformation , Oligonucleotides/chemistry , Ultraviolet Rays , Uridine/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...