Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
ACS Nano ; 17(23): 23317-23330, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37982733

ABSTRACT

Antivirals are indispensable tools that can be targeted at viral domains directly or at cellular domains indirectly to obstruct viral infections and reduce pathogenicity. Despite their transformative use in healthcare, antivirals have been clinically approved to treat only 10 of the more than 200 known pathogenic human viruses. Additionally, many virus functions are intimately coupled with host cellular processes, which presents challenges in antiviral development due to the limited number of clear targets per virus, necessitating extensive insight into these molecular processes. Compounding this challenge, many viral pathogens have evolved to evade effective antivirals. We hypothesize that a viral attachment blocking chimera (VirABloC) composed of a viral binder and a bulky scaffold that sterically blocks interactions between a viral particle and a host cell may be suitable for the development of antivirals that are agnostic to the extravirion epitope that is being bound. We test this hypothesis by modifying a nanobody that specifically recognizes a nonessential epitope presented on the extravirion surface of pseudorabies virus strain 486 with a 3-dimensional wireframe DNA origami structure ∼100 nm in diameter. The nanobody switches from having no inhibitory properties to 4.2 ± 0.9 nM IC50 when conjugated with the DNA origami scaffold. Mechanistic studies support that inhibition is mediated by the noncovalent attachment of the DNA origami scaffold to the virus particle, which obstructs the attachment of the viruses onto host cells. These results support the potential of VirABloC as a generalizable approach to developing antivirals.


Subject(s)
Herpesvirus 1, Suid , Viruses , Animals , Humans , Herpesvirus 1, Suid/genetics , Virus Attachment , DNA , Epitopes , Antiviral Agents
2.
PLoS One ; 18(7): e0283134, 2023.
Article in English | MEDLINE | ID: mdl-37467178

ABSTRACT

DNA origami purification is essential for many fields, including biophysics, molecular engineering, and therapeutics. The increasing interest in DNA origami has led to the development of rate-zonal centrifugation (RZC) as a scalable, high yield, and contamination-free method for purifying DNA origami nanostructures. RZC purification uses a linear density gradient of viscous media, such as glycerol or sucrose, to separate molecules according to their mass and shape. However, many methods for creating density gradients are time-consuming because they rely on slow passive diffusion. To expedite the preparation time, we used a LEGO gradient mixer to generate rotational motion and rapidly create a quasi-continuous density gradient with a minimal layering of the viscous media. Rotating two layers of differing concentrations at an angle decreases the time needed to form the density gradient from a few hours to minutes. In this study, the density gradients created by the LEGO gradient mixer were used to purify 3 DNA origami shapes that have different aspect ratios and numbers of components, with an aspect ratio ranging from 1:1 to 1:100 and the number of components up to 2. The gradient created by our LEGO gradient mixer is sufficient to purify folded DNA origami nanostructures from excess staple strands, regardless of their aspect ratios. Moreover, the gradient was able to separate DNA origami dimers from DNA origami monomers. In light of recent advances in large-scale DNA origami production, our method provides an alternative for purifying DNA origami nanostructures in large (gram) quantities in resource-limited settings.


Subject(s)
Nanostructures , Robotics , Centrifugation, Zonal , Nucleic Acid Conformation , Nanostructures/chemistry , DNA/chemistry , Nanotechnology/methods
3.
Proc Natl Acad Sci U S A ; 120(22): e2220033120, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37235635

ABSTRACT

The complex motility of bacteria, ranging from single-swimmer behaviors such as chemotaxis to collective dynamics, including biofilm formation and active matter phenomena, is driven by their microscale propellers. Despite extensive study of swimming flagellated bacteria, the hydrodynamic properties of their helical-shaped propellers have never been directly measured. The primary challenges to directly studying microscale propellers are 1) their small size and fast, correlated motion, 2) the necessity of controlling fluid flow at the microscale, and 3) isolating the influence of a single propeller from a propeller bundle. To solve the outstanding problem of characterizing the hydrodynamic properties of these propellers, we adopt a dual statistical viewpoint that connects to the hydrodynamics through the fluctuation-dissipation theorem (FDT). We regard the propellers as colloidal particles and characterize their Brownian fluctuations, described by 21 diffusion coefficients for translation, rotation, and correlated translation-rotation in a static fluid. To perform this measurement, we applied recent advances in high-resolution oblique plane microscopy to generate high-speed volumetric movies of fluorophore-labeled, freely diffusing Escherichia coli flagella. Analyzing these movies with a bespoke helical single-particle tracking algorithm, we extracted trajectories, calculated the full set of diffusion coefficients, and inferred the average propulsion matrix using a generalized Einstein relation. Our results provide a direct measurement of a microhelix's propulsion matrix and validate proposals that the flagella are highly inefficient propellers, with a maximum propulsion efficiency of less than 3%. Our approach opens broad avenues for studying the motility of particles in complex environments where direct hydrodynamic approaches are not feasible.

4.
Science ; 375(6585): 1089-1090, 2022 03 11.
Article in English | MEDLINE | ID: mdl-35271310

ABSTRACT

Natural dynein protein motors are reengineered to walk on specific artificial DNA tracks.


Subject(s)
Dyneins , Shoes , DNA , Dyneins/metabolism
5.
Viruses ; 14(2)2022 02 21.
Article in English | MEDLINE | ID: mdl-35216031

ABSTRACT

Viral aggregation is a complex and pervasive phenomenon affecting many viral families. An increasing number of studies have indicated that it can modulate critical parameters surrounding viral infections, and yet its role in viral infectivity, pathogenesis, and evolution is just beginning to be appreciated. Aggregation likely promotes viral infection by increasing the cellular multiplicity of infection (MOI), which can help overcome stochastic failures of viral infection and genetic defects and subsequently modulate their fitness, virulence, and host responses. Conversely, aggregation can limit the dispersal of viral particles and hinder the early stages of establishing a successful infection. The cost-benefit of viral aggregation seems to vary not only depending on the viral species and aggregating factors but also on the spatiotemporal context of the viral life cycle. Here, we review the knowns of viral aggregation by focusing on studies with direct observations of viral aggregation and mechanistic studies of the aggregation process. Next, we chart the unknowns and discuss the biological implications of viral aggregation in their infection cycle. We conclude with a perspective on harnessing the therapeutic potential of this phenomenon and highlight several challenging questions that warrant further research for this field to advance.


Subject(s)
Virion , Virus Diseases/virology , Virus Replication , Animals , Biological Evolution , Humans
6.
ACS Nano ; 15(7): 11441-11450, 2021 07 27.
Article in English | MEDLINE | ID: mdl-34228915

ABSTRACT

Large-scale nanoarrays of single biomolecules enable high-throughput assays while unmasking the underlying heterogeneity within ensemble populations. Until recently, creating such grids which combine the advantages of microarrays and single-molecule experiments (SMEs) has been particularly challenging due to the mismatch between the size of these molecules and the resolution of top-down fabrication techniques. DNA origami placement (DOP) combines two powerful techniques to address this issue: (i) DNA origami, which provides a ∼100 nm self-assembled template for single-molecule organization with 5 nm resolution and (ii) top-down lithography, which patterns these DNA nanostructures, transforming them into functional nanodevices via large-scale integration with arbitrary substrates. Presently, this technique relies on state-of-the-art infrastructure and highly trained personnel, making it prohibitively expensive for researchers. Here, we introduce a cleanroom-free, $1 benchtop technique to create meso-to-macro-scale DNA origami nanoarrays using self-assembled colloidal nanoparticles, thereby circumventing the need for top-down fabrication. We report a maximum yield of 74%, 2-fold higher than the statistical limit of 37% imposed on non-specific molecular loading alternatives. Furthermore, we provide a proof-of-principle for the ability of this nanoarray platform to transform traditionally low-throughput, stochastic, single-molecule assays into high-throughput, deterministic ones, without compromising data quality. Our approach has the potential to democratize single-molecule nanoarrays and demonstrates their utility as a tool for biophysical assays and diagnostics.


Subject(s)
Nanostructures , Nanotechnology , Nanotechnology/methods , DNA/chemistry , Nanostructures/chemistry , Printing , Microarray Analysis , Nucleic Acid Conformation
7.
Nat Chem ; 11(6): 510-520, 2019 06.
Article in English | MEDLINE | ID: mdl-31011170

ABSTRACT

Biological cells routinely reconfigure their shape using dynamic signalling and regulatory networks that direct self-assembly processes in time and space, through molecular components that sense, process and transmit information from the environment. A similar strategy could be used to enable life-like behaviours in synthetic materials. Nucleic acid nanotechnology offers a promising route towards this goal through a variety of sensors, logic and dynamic components and self-assembling structures. Here, by harnessing both dynamic and structural DNA nanotechnology, we demonstrate dynamic control of the self-assembly of DNA nanotubes-a well-known class of programmable DNA nanostructures. Nanotube assembly and disassembly is controlled with minimal synthetic gene systems, including an autonomous molecular oscillator. We use a coarse-grained computational model to capture nanotube length distribution dynamics in response to inputs from nucleic acid circuits. We hope that these results may find use for the development of responsive nucleic acid materials, with potential applications in biomaterials science, nanofabrication and drug delivery.


Subject(s)
DNA/chemistry , Nanotubes/chemistry , Base Sequence , Fluorescent Dyes/chemistry , Microscopy, Fluorescence , Models, Molecular , Nanotechnology/methods
8.
J Phys Chem B ; 123(3): 675-688, 2019 01 24.
Article in English | MEDLINE | ID: mdl-30571128

ABSTRACT

We develop a Bayesian nonparametric framework to analyze single molecule FRET (smFRET) data. This framework, a variation on infinite hidden Markov models, goes beyond traditional hidden Markov analysis, which already treats photon shot noise, in three critical ways: (1) it learns the number of molecular states present in a smFRET time trace (a hallmark of nonparametric approaches), (2) it accounts, simultaneously and self-consistently, for photophysical features of donor and acceptor fluorophores (blinking kinetics, spectral cross-talk, detector quantum efficiency), and (3) it treats background photons. Point 2 is essential in reducing the tendency of nonparametric approaches to overinterpret noisy single molecule time traces and so to estimate states and transition kinetics robust to photophysical artifacts. As a result, with the proposed framework, we obtain accurate estimates of single molecule properties even when the supplied traces are excessively noisy, subject to photoartifacts, and of short duration. We validate our method using synthetic data sets and demonstrate its applicability to real data sets from single molecule experiments on Holliday junctions labeled with conventional fluorescent dyes.


Subject(s)
DNA/chemistry , Fluorescence Resonance Energy Transfer/statistics & numerical data , Bayes Theorem , DNA, Cruciform , Fluorescent Dyes/chemistry , Kinetics , Markov Chains
9.
ACS Nano ; 10(9): 8281-8, 2016 09 27.
Article in English | MEDLINE | ID: mdl-27571140

ABSTRACT

Nature has evolved molecular motors that are critical in cellular processes occurring over broad time scales, ranging from seconds to years. Despite the importance of the long-term behavior of molecular machines, topics such as enzymatic lifetime are underexplored due to the lack of a suitable approach for monitoring motor activity over long time periods. Here, we developed an "O"-shaped Myosin Empowered Gliding Assay (OMEGA) that utilizes engineered micron-scale DNA nanotube rings with precise arrangements of myosin VI to trap gliding actin filaments. This circular gliding assay platform allows the same individual actin filament to glide over the same myosin ensemble (50-1000 motors per ring) multiple times. First, we systematically characterized the formation of DNA nanotubes rings with 4, 6, 8, and 10 helix circumferences. Individual actin filaments glide along the nanotube rings with high processivity for up to 12.8 revolutions or 11 min in run time. We then show actin gliding speed is robust to variation in motor number and independent of ring curvature within our sample space (ring diameter of 0.5-4 µm). As a model application of OMEGA, we then analyze motor-based mechanical influence on "stop-and-go" gliding behavior of actin filaments, revealing that the stop-to-go transition probability is dependent on motor flexibility. Our circular gliding assay may provide a closed-loop platform for monitoring long-term behavior of broad classes of molecular motors and enable characterization of motor robustness and long time scale nanomechanical processes.


Subject(s)
Actin Cytoskeleton/chemistry , DNA/chemistry , Nanotubes , Actins , Biological Assay , Myosins
10.
Proc Natl Acad Sci U S A ; 112(45): E6086-95, 2015 Nov 10.
Article in English | MEDLINE | ID: mdl-26504222

ABSTRACT

Quantifying the mechanical forces produced by fluid flows within the ocean is critical to understanding the ocean's environmental phenomena. Such forces may have been instrumental in the origin of life by driving a primitive form of self-replication through fragmentation. Among the intense sources of hydrodynamic shear encountered in the ocean are breaking waves and the bursting bubbles produced by such waves. On a microscopic scale, one expects the surface-tension-driven flows produced during bubble rupture to exhibit particularly high velocity gradients due to the small size scales and masses involved. However, little work has examined the strength of shear flow rates in commonly encountered ocean conditions. By using DNA nanotubes as a novel fluid flow sensor, we investigate the elongational rates generated in bursting films within aqueous bubble foams using both laboratory buffer and ocean water. To characterize the elongational rate distribution associated with a bursting bubble, we introduce the concept of a fragmentation volume and measure its form as a function of elongational flow rate. We find that substantial volumes experience surprisingly large flow rates: during the bursting of a bubble having an air volume of 10 mm(3), elongational rates at least as large as [Formula: see text] s(-1) are generated in a fragmentation volume of [Formula: see text] [Formula: see text]. The determination of the elongational strain rate distribution is essential for assessing how effectively fluid motion within bursting bubbles at the ocean surface can shear microscopic particles and microorganisms, and could have driven the self-replication of a protobiont.


Subject(s)
Aerosols/analysis , DNA/chemistry , Nanotubes/chemistry , Seawater/chemistry , California , Hydrodynamics , Lasers , Microscopy, Fluorescence
11.
PLoS One ; 10(9): e0137125, 2015.
Article in English | MEDLINE | ID: mdl-26348722

ABSTRACT

DNA origami provides a versatile platform for conducting 'architecture-function' analysis to determine how the nanoscale organization of multiple copies of a protein component within a multi-protein machine affects its overall function. Such analysis requires that the copy number of protein molecules bound to the origami scaffold exactly matches the desired number, and that it is uniform over an entire scaffold population. This requirement is challenging to satisfy for origami scaffolds with many protein hybridization sites, because it requires the successful completion of multiple, independent hybridization reactions. Here, we show that a cleavable dimerization domain on the hybridizing protein can be used to multiplex hybridization reactions on an origami scaffold. This strategy yields nearly 100% hybridization efficiency on a 6-site scaffold even when using low protein concentration and short incubation time. It can also be developed further to enable reliable patterning of a large number of molecules on DNA origami for architecture-function analysis.


Subject(s)
DNA, Fungal/isolation & purification , DNA, Single-Stranded/chemistry , Nucleic Acid Hybridization/methods , Oligonucleotides/chemistry , DNA, Fungal/chemistry , DNA, Fungal/genetics , DNA, Single-Stranded/genetics , Glutathione/chemistry , Glycerol/chemistry , Kinetochores/chemistry , Lasers , Microscopy, Electron , Nuclear Proteins/chemistry , Nuclear Proteins/genetics , Oligonucleotides/genetics , Protein Multimerization , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Yeasts/genetics
12.
Elife ; 42015 Mar 04.
Article in English | MEDLINE | ID: mdl-25738229

ABSTRACT

Myosin V and VI are antagonistic motors that cohabit membrane vesicles in cells. A systematic study of their collective function, however, is lacking and forms the focus of this study. We functionally reconstitute a two-dimensional actin-myosin interface using myosin V and VI precisely patterned on DNA nanostructures, in combination with a model keratocyte actin meshwork. While scaffolds display solely unidirectional movement, their directional flux is modulated by both actin architecture and the structural properties of the myosin lever arm. This directional flux can be finely-tuned by the relative number of myosin V and VI motors on each scaffold. Pairing computation with experimental observations suggests that the ratio of motor stall forces is a key determinant of the observed competitive outcomes. Overall, our study demonstrates an elegant mechanism for sorting of membrane cargo using equally matched antagonistic motors, simply by modulating the relative number of engagement sites for each motor type.


Subject(s)
Actin Cytoskeleton/chemistry , Molecular Motor Proteins/chemistry , Myosin Heavy Chains/chemistry , Myosin Type V/chemistry , Actin Cytoskeleton/metabolism , Actins/chemistry , Actins/metabolism , Animals , Chickens , Cichlids/metabolism , Cytoplasmic Vesicles/metabolism , DNA/chemistry , DNA/metabolism , Epidermal Cells , Epidermis/metabolism , Models, Molecular , Molecular Motor Proteins/metabolism , Myosin Heavy Chains/metabolism , Myosin Type V/metabolism , Nanostructures/chemistry , Nucleic Acid Conformation , Protein Conformation , Protein Transport , Sf9 Cells , Sus scrofa
13.
Chem Sci ; 6(4): 2252-2267, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-29308139

ABSTRACT

DNA nanotubes provide a programmable architecture for molecular self-assembly and can serve as model systems for one-dimensional biomolecular assemblies. While a variety of DNA nanotubes have been synthesized and employed as models for natural biopolymers, an extensive investigation of DNA nanotube kinetics and thermodynamics has been lacking. Using total internal reflection microscopy, DNA nanotube polymerization was monitored in real time at the single filament level over a wide range of free monomer concentrations and temperatures. The measured polymerization rates were subjected to a global nonlinear fit based on polymerization theory in order to simultaneously extract kinetic and thermodynamic parameters. For the DNA nanotubes used in this study, the association rate constant is (5.99 ± 0.15) × 105 M-1 s-1, the enthalpy is 87.9 ± 2.0 kcal mol-1, and the entropy is 0.252 ± 0.006 kcal mol-1 K-1. The qualitative and quantitative similarities between the kinetics of DNA nanotubes, actin filaments, and microtubules polymerization highlight the prospect of building complex dynamic systems from DNA molecules inspired by biological architecture.

14.
Proc Natl Acad Sci U S A ; 111(11): 4091-6, 2014 Mar 18.
Article in English | MEDLINE | ID: mdl-24591646

ABSTRACT

The molecular motor myosin teams up to drive muscle contraction, membrane traffic, and cell division in biological cells. Myosin function in cells emerges from the interaction of multiple motors tethered to a scaffold, with surrounding actin filaments organized into 3D networks. Despite the importance of myosin function, the influence of intermotor interactions on collective motion remains poorly understood. In this study, we used precisely engineered myosin assemblies to examine emergence in collective myosin movement. We report that tethering multiple myosin VI motors, but not myosin V motors, modifies their movement trajectories on keratocyte actin networks. Single myosin V and VI dimers display similar skewed trajectories, albeit in opposite directions, when traversing the keratocyte actin network. In contrast, tethering myosin VI motors, but not myosin V motors, progressively straightens the trajectories with increasing myosin number. Trajectory shape of multimotor scaffolds positively correlates with the stiffness of the myosin lever arm. Swapping the flexible myosin VI lever arm for the relatively rigid myosin V lever increases trajectory skewness, and vice versa. A simplified model of coupled motor movement demonstrates that the differences in flexural rigidity of the two myosin lever arms is sufficient to account for the differences in observed behavior of groups of myosin V and VI motors. In accordance with this model trajectory, shapes for scaffolds containing both myosin V and VI are dominated by the myosin with a stiffer lever arm. Our findings suggest that structural features unique to each myosin type may confer selective advantages in cellular functions.


Subject(s)
Actin Cytoskeleton/metabolism , Models, Biological , Movement/physiology , Myosins/metabolism , Bioengineering/methods , Biomimetics , Biophysics , Molecular Dynamics Simulation , Nanotechnology/methods
15.
Nat Commun ; 4: 1965, 2013.
Article in English | MEDLINE | ID: mdl-23756381

ABSTRACT

DNA nanotechnology has emerged as a reliable and programmable way of controlling matter at the nanoscale through the specificity of Watson-Crick base pairing, allowing both complex self-assembled structures with nanometer precision and complex reaction networks implementing digital and analog behaviors. Here we show how two well-developed frameworks, DNA tile self-assembly and DNA strand-displacement circuits, can be systematically integrated to provide programmable kinetic control of self-assembly. We demonstrate the triggered and catalytic isothermal self-assembly of DNA nanotubes over 10 µm long from precursor DNA double-crossover tiles activated by an upstream DNA catalyst network. Integrating more sophisticated control circuits and tile systems could enable precise spatial and temporal organization of dynamic molecular structures.


Subject(s)
DNA/chemistry , Nanotechnology/methods , Catalysis , Kinetics , Microscopy, Fluorescence , Nanotubes/chemistry , Time-Lapse Imaging
16.
J Am Chem Soc ; 134(25): 10485-92, 2012 Jun 27.
Article in English | MEDLINE | ID: mdl-22694312

ABSTRACT

While the theoretical implications of models of DNA tile self-assembly have been extensively researched and such models have been used to design DNA tile systems for use in experiments, there has been little research testing the fundamental assumptions of those models. In this paper, we use direct observation of individual tile attachments and detachments of two DNA tile systems on a mica surface imaged with an atomic force microscope (AFM) to compile statistics of tile attachments and detachments. We show that these statistics fit the widely used kinetic Tile Assembly Model and demonstrate AFM movies as a viable technique for directly investigating DNA tile systems during growth rather than after assembly.


Subject(s)
DNA/chemistry , Microscopy, Atomic Force , Models, Biological , Crystallization
17.
Phys Rev E Stat Nonlin Soft Matter Phys ; 82(4 Pt 2): 046307, 2010 Oct.
Article in English | MEDLINE | ID: mdl-21230390

ABSTRACT

The length distributions of polymer fragments subjected to an elongational-flow-induced scission are profoundly affected by the fluid flow and the polymer bond strengths. In this paper, laminar elongational flow was used to induce chain scission of a series of circumference-programmed DNA nanotubes. The DNA nanotubes served as a model system for semiflexible polymers with tunable bond strength and cross-sectional geometry. The expected length distribution of fragmented DNA nanotubes was calculated from first principles by modeling the interplay between continuum hydrodynamic elongational flow and the molecular forces required to overstretch multiple DNA double helices. Our model has no-free parameters; the only inferred parameter is obtained from DNA mechanics literature, namely, the critical tension required to break a DNA duplex into two single-stranded DNA strands via the overstretching B-S DNA transition. The nanotube fragments were assayed with fluorescence microscopy at the single-molecule level and their lengths are in agreement with the scission theory.


Subject(s)
Base Pairing , DNA/chemistry , Hydrodynamics , Models, Biological , Nanotubes , Bayes Theorem , Microfluidic Analytical Techniques , Microscopy, Fluorescence , Normal Distribution , Stress, Mechanical
18.
Science ; 321(5890): 824-6, 2008 Aug 08.
Article in English | MEDLINE | ID: mdl-18687961

ABSTRACT

Synthesizing molecular tubes with monodisperse, programmable circumferences is an important goal shared by nanotechnology, materials science, and supermolecular chemistry. We program molecular tube circumferences by specifying the complementarity relationships between modular domains in a 42-base single-stranded DNA motif. Single-step annealing results in the self-assembly of long tubes displaying monodisperse circumferences of 4, 5, 6, 7, 8, 10, or 20 DNA helices.


Subject(s)
DNA, Single-Stranded/chemistry , DNA/chemistry , Nanotechnology , Nucleic Acid Conformation , Microscopy, Atomic Force , Nanotubes
SELECTION OF CITATIONS
SEARCH DETAIL
...