Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
3 Biotech ; 11(5): 225, 2021 May.
Article in English | MEDLINE | ID: mdl-33968570

ABSTRACT

The aim of the current study is to ascertain the anticancer activity of exopolysaccharides (EPS) from probiotic Lactobacillus acidophilus in the 1, 2-dimethyl hydrazine (DMH)-induced colon cancer rat model and to determine the antioxidant status. Rats were divided into five groups of six animals each. Group I served as control, group II served as cancer control (DMH alone administered), group III as standard drug control (5-FU along with DMH) and group IV and V received EPS in two doses (200 mg/kg body weight and 400 mg/kg body weight along with DMH). EPS administration was found to reduce the number of polyps formed (Group IV-8.25 ± 1.258 and Group V-8.50 ± 1.732 vs Group II-14.50 ± 2.380) and to increase the levels of antioxidant enzymes viz. Superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) and antioxidants like vitamin C (Vit. C), reduced glutathione (GSH) which was found to be reduced in colon cancer control rats. The status of lipid peroxidation (LPO) was also evaluated. All the values which were affected by the supplementation of DMH were brought to near normal levels by the treatment with EPS. The well-preserved histology of colon and the biochemical evaluation also show that EPS could be a potential agent for the prevention and treatment of colon cancer.

2.
Colloids Surf B Biointerfaces ; 74(1): 328-35, 2009 Nov 01.
Article in English | MEDLINE | ID: mdl-19716685

ABSTRACT

The application of nanoscale materials and structures, usually ranging from 1 to 100 nanometers (nm), is an emerging area of nanoscience and nanotechnology. Nanomaterials may provide solutions to technological and environmental challenges in the areas of solar energy conversion, catalysis, medicine, and water-treatment. The development of techniques for the controlled synthesis of nanoparticles of well-defined size, shape and composition, to be used in the biomedical field and areas such as optics and electronics, has become a big challenge. Development of reliable and eco-friendly processes for synthesis of metallic nanoparticles is an important step in the field of application of nanotechnology. One of the options to achieve this objective is to use 'natural factories' such as biological systems. This study reports the optimal conditions for maximum synthesis of silver nanoparticles (AgNPs) through reduction of Ag(+) ions by the culture supernatant of Escherichia coli. The synthesized silver nanoparticles were purified by using sucrose density gradient centrifugation. The purified sample was further characterized by UV-vis spectra, fluorescence spectroscopy and TEM. The purified solution yielded the maximum absorbance peak at 420 nm and the TEM characterization showed a uniform distribution of nanoparticles, with an average size of 50 nm. X-ray diffraction (XRD) spectrum of the silver nanoparticles exhibited 2theta values corresponding to the silver nanocrystal. The size-distribution of nanoparticles was determined using a particle-size analyzer and the average particle size was found to be 50 nm. This study also demonstrates that particle size could be controlled by varying the parameters such as temperature, pH and concentration of AgNO(3).


Subject(s)
Escherichia coli/metabolism , Metal Nanoparticles/microbiology , Silver/chemistry , Silver/isolation & purification , Centrifugation, Density Gradient , Culture Media , Escherichia coli/drug effects , Escherichia coli/growth & development , Escherichia coli/ultrastructure , Hydrogen-Ion Concentration/drug effects , Metal Nanoparticles/chemistry , Metal Nanoparticles/ultrastructure , Particle Size , Silver Nitrate/pharmacology , Spectrophotometry, Ultraviolet , Temperature , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...