Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Metabolites ; 12(12)2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36557237

ABSTRACT

Implementation of outdoor photobioreactors has been challenged by an extremely oversaturated daily peak of solar irradiance. This study aims to understand the role of column size and paranet shading as well as to investigate the most convenient light control in outdoor cyanobacterial culture. The photobioreactor (PBR) consisted of plastic columns with a diameter of 12.74 cm (PBRd-20) and 31.85 cm (PBRd-50) laid outdoors and inclined at 158.22° upwards against solar radiation, while paranet shading was provided at 0%, 50%, 70%, and 90% shading capacity. A semi-continuous culture of cyanobacterium Arthrospira (Spirulina) platensis was conducted for 6 weeks with weekly monitoring of the growth parameter as well as the proximate and pigments content, while the daily irradiance and culture maximum temperature were recorded. The result shows that the column diameter of 12.74 cm had a lethal risk of 44.7% and this decreased to 10.5% by widening the column diameter to 31.85 cm. This lethal risk can be eliminated by the application of a paranet at a 50% reduction level for the column diameter of 31.85 cm and a 70% reduction level for the column diameter of 12.74 cm. The highest culture productivity of 149.03 mg/(L·day) was achieved with a PBRd-20 with 50% shading treatment, but a PBRd-50 with 90% shading treatment led to an increase in the protein and phycocyanin content by 66.7% and 14.91%, respectively.

2.
Biofouling ; 38(9): 889-902, 2022 10.
Article in English | MEDLINE | ID: mdl-36382389

ABSTRACT

This study explored the applicability of chemical cleaning and air-backwash to alleviate biofouling on seawater membrane distillation (SWMD). Membrane performance and wettability properties maintained at optimum duration and frequency of the treatments, as indicated by low permeate conductivity throughout the tests. The cleaning of the membrane using 2% NaOH by immersing the membrane for 30 min after 240 min operation removed the biofouling layer, indicated by low permeate conductivity of 370 µScm-1 after cleaning. However, more frequent membrane cleaning led to membrane damage, more severe wetting, and membrane hydrophobicity reduction. Ten-second air-backwash after 240 min of operation was also effective in controlling the biofouling, particularly when conducted at air pressure of 1 bar. More frequent air-backwash resulted in more aggravated inorganic fouling and accelerated biofouling formation due to the recurring introduction of air, leading to rapid membrane wetting.


Subject(s)
Biofouling , Water Purification , Biofouling/prevention & control , Distillation , Membranes, Artificial , Water Purification/methods , Biofilms , Seawater/chemistry
3.
Colloids Surf B Biointerfaces ; 146: 459-67, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27395039

ABSTRACT

Extracellular polymeric substances (EPS) matrix in biofilm poses important functions such as a diffusion barrier to antimicrobial agents so that biofilm cells are more difficult to completely eliminate. Therefore, biofilm cells exhibit enhanced resilience unlike planktonic cells, and are more difficult to completely eliminate. In order to obtain a comprehensive understanding of bacterial adhesion to surfaces, knowledge of the composition and conformational properties of EPS produced during growth and biofilm formation is required, since their adhesive and conformational properties remain poorly understood at molecular level. Present study has provided further insights into identifying compositional and conformational properties of EPS produced by planktonic and biofilm cells of B. subtilis and P. aeruginosa. Various spectroscopy analyses showed that EPS produced by the two different species were chemically dissimilar. More proteinaceous compounds were present in EPS from B. subtilis, while EPS from P. aeruginosa were characterized by greater carbohydrate components. However, relative proportions of polysaccharides and/or proteins constituents varied with the growth mode of the bacteria. AFM was then used to probe the adhesive nature of EPS produced by the bacteria by using Single Molecule Force Spectroscopy (SMFS). Comparison of the two bacterial species indicated that the presence of polysaccharides promoted the adhesion strength of the EPS while proteins had lesser adherence effects. Comparison of the two growth modes for the same bacterial strain also indicated that greater EPS production and enhanced cellular adhesion are associated with biofilm growth.


Subject(s)
Bacillus subtilis/drug effects , Bacterial Adhesion/drug effects , Biofilms/growth & development , Extracellular Matrix/chemistry , Polymers/pharmacology , Pseudomonas aeruginosa/drug effects , Biofilms/drug effects , Extracellular Matrix/metabolism , Polymers/chemistry , Polysaccharides, Bacterial/chemistry , Polysaccharides, Bacterial/pharmacology
4.
Bioresour Technol ; 207: 175-9, 2016 May.
Article in English | MEDLINE | ID: mdl-26881335

ABSTRACT

Lignin inhibitory becomes a major obstacle for enzymatic hydrolysis of empty fruit bunch conducted in high solid loading. Since current technology required high enzyme loading, surfactant application could not effectively used since it is only efficient in low enzyme loading. In addition, it will increase final operation cost. Hence, another method namely "proportional enzyme feeding" was investigated in this paper. In this method, enzyme was added to reactor proportionally to substrate addition, different from conventional method ("whole enzyme feeding") where whole enzyme was added prior to hydrolysis process started. Proportional enzyme feeding could increase enzymatic digestibility and glucose concentration up to 26% and 12% respectively, compared to whole enzyme feeding for hydrolysis duration more than 40h. If enzymatic hydrolysis was run less than 40h (25% solid loading), whole enzyme feeding is preferable.


Subject(s)
Arecaceae/metabolism , Batch Cell Culture Techniques/methods , Cellulase/metabolism , Fruit/metabolism , Cellulose/analysis , Hydrolysis , Lignin/analysis , Polysaccharides/analysis , Steam
5.
J Colloid Interface Sci ; 405: 233-41, 2013 Sep 01.
Article in English | MEDLINE | ID: mdl-23777862

ABSTRACT

Interactions between the bacterium Bacillus subtilis (either as vegetative cells or as spores) and stainless steel 316 (SS-316) surfaces were quantified using the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory and extended DLVO (xDLVO) approach in conjunction with live force spectroscopy using an Atomic Force Microscope (AFM). The xDLVO approach accounts for acid-base (polar) interactions that are not considered in the classical DLVO theory. AFM results revealed that spores manifested stronger attraction interactions to stainless steel compared to their vegetative cells counterparts due to lower energy barrier as predicted by both the theoretical approaches as well as the higher hydrophobicity on the spore surfaces. Both DLVO and xDLVO theories predict that vegetative cells manifest weaker attachment on the surfaces compared to spores. Results of AFM force measurement corroborate these findings; spores recorded significantly higher adhesion force (2.92±0.4 nN) compared to vegetative cells (0.65±0.2 nN). The adhesion of spores presents greater challenges in biofilm control owing to its stronger attachment and persistence when the spores are formed under adverse environmental conditions.


Subject(s)
Bacillus subtilis/physiology , Bacterial Adhesion , Microscopy, Atomic Force , Spores, Bacterial/physiology , Biofilms , Hydrodynamics , Hydrophobic and Hydrophilic Interactions , Microscopy, Electron, Scanning , Models, Theoretical , Stainless Steel , Surface Properties
7.
J Colloid Interface Sci ; 364(1): 213-8, 2011 Dec 01.
Article in English | MEDLINE | ID: mdl-21889162

ABSTRACT

Understanding bacterial adhesion to surfaces requires knowledge of the forces that govern bacterial-surface interactions. Biofilm formation on stainless steel 316 (SS316) by three bacterial species was investigated by examining surface force interaction between the cells and metal surface using atomic force microscopy (AFM). Bacterial-metal adhesion force was quantified at different surface delay time from 0 to 60s using AFM tip coated with three different bacterial species: Gram-negative Massilia timonae and Pseudomonas aeruginosa, and Gram-positive Bacillus subtilis. The results revealed that bacterial adhesion forces on SS316 surface by Gram-negative bacteria is higher (8.53±1.40 nN and 7.88±0.94 nN) when compared to Gram-positive bacteria (1.44±0.21 nN). Physicochemical analysis on bacterial surface properties also revealed that M. timonae and P. aeruginosa showed higher hydrophobicity and surface charges than B. subtilis along with the capability of producing extracellular polymeric substances (EPS). The higher hydrophobicity, surface charges, and greater propensity to form EPS by M. timonae and P. aeruginosa led to high adhesive force on the metal surface.


Subject(s)
Bacillus subtilis/chemistry , Oxalobacteraceae/chemistry , Pseudomonas aeruginosa/chemistry , Biofilms , Chemistry, Physical , Microscopy, Atomic Force , Stainless Steel/chemistry , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...