Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
J Vet Diagn Invest ; 32(2): 259-267, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31924132

ABSTRACT

Two putative zinc metalloproteases encoded by Clostridium perfringens have been implicated in the pathogenesis of necrotic enteritis, an economically significant poultry disease that is caused by this anaerobic bacterium. These proteases have ~64% amino acid identity and are encoded by the zmpA and zmpB genes. We screened 83 C. perfringens isolates by PCR for the presence of these genes. The first gene, zmpB, is chromosomally located and was present in all screened strains of C. perfringens, regardless of their origin and virulence. The second gene, zmpA, is plasmid-borne and was only found in isolates derived from chickens with necrotic enteritis. We describe the generation of insertionally inactivated mutants of both zmpA and zmpB in a virulent C. perfringens isolate. For each mutant, a significant (p < 0.001) reduction in virulence was observed in a chicken necrotic enteritis disease model. Examples of each mutant strain were characterized by whole genome sequencing, which showed that there were a few off-site mutations with the potential to affect the virulence of these strains. To confirm the importance of these genes, independently derived zmpA and zmpB mutants were constructed in different virulent C. perfringens isolates and shown to have reduced virulence in the experimental disease induction model. A zmpA-zmpB double mutant also was generated and shown to have significantly reduced virulence, to the same extent as the respective single mutants. Our results provide evidence that both putative zinc metalloproteases play an important role in disease pathogenesis.


Subject(s)
Bacterial Proteins/genetics , Clostridium Infections/veterinary , Clostridium perfringens/physiology , Clostridium perfringens/pathogenicity , Enterocolitis, Necrotizing/veterinary , Metalloendopeptidases/genetics , Poultry Diseases/microbiology , Animals , Bacterial Proteins/metabolism , Clostridium Infections/microbiology , Clostridium perfringens/enzymology , Enterocolitis, Necrotizing/microbiology , Metalloendopeptidases/metabolism , Virulence
2.
BMC Genomics ; 19(1): 379, 2018 May 22.
Article in English | MEDLINE | ID: mdl-29788909

ABSTRACT

BACKGROUND: Clostridium perfringens causes a range of diseases in animals and humans including necrotic enteritis in chickens and food poisoning and gas gangrene in humans. Necrotic enteritis is of concern in commercial chicken production due to the cost of the implementation of infection control measures and to productivity losses. This study has focused on the genomic analysis of a range of chicken-derived C. perfringens isolates, from around the world and from different years. The genomes were sequenced and compared with 20 genomes available from public databases, which were from a diverse collection of isolates from chickens, other animals, and humans. We used a distance based phylogeny that was constructed based on gene content rather than sequence identity. Similarity between strains was defined as the number of genes that they have in common divided by their total number of genes. In this type of phylogenetic analysis, evolutionary distance can be interpreted in terms of evolutionary events such as acquisition and loss of genes, whereas the underlying properties (the gene content) can be interpreted in terms of function. We also compared these methods to the sequence-based phylogeny of the core genome. RESULTS: Distinct pathogenic clades of necrotic enteritis-causing C. perfringens were identified. They were characterised by variable regions encoded on the chromosome, with predicted roles in capsule production, adhesion, inhibition of related strains, phage integration, and metabolism. Some strains have almost identical genomes, even though they were isolated from different geographic regions at various times, while other highly distant genomes appear to result in similar outcomes with regard to virulence and pathogenesis. CONCLUSIONS: The high level of diversity in chicken isolates suggests there is no reliable factor that defines a chicken strain of C. perfringens, however, disease-causing strains can be defined by the presence of netB-encoding plasmids. This study reveals that horizontal gene transfer appears to play a significant role in genetic variation of the C. perfringens chromosome as well as the plasmid content within strains.


Subject(s)
Clostridium perfringens/genetics , Clostridium perfringens/physiology , Enteritis/microbiology , Evolution, Molecular , Genetic Variation , Animals , Chickens/microbiology , Chromosomes/genetics , Enteritis/complications , Necrosis/complications , Plasmids/genetics
3.
Sci Rep ; 8(1): 4398, 2018 Mar 08.
Article in English | MEDLINE | ID: mdl-29520085

ABSTRACT

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

4.
Sci Rep ; 7(1): 10738, 2017 09 06.
Article in English | MEDLINE | ID: mdl-28878251

ABSTRACT

In large areas of sub-Saharan Africa crop production must cope with low soil fertility. To increase soil fertility, the application of biochar (charred biomass) has been suggested. In urban areas, untreated waste water is widely used for irrigation because it is a nutrient-rich year-round water source. Uncertainty exists regarding the interactions between soil properties, biochar, waste water and fertilization over time. The aims of this study were to determine these interactions in two typical sandy, soil organic carbon (SOC) and nutrient depleted soils under urban vegetable production in Tamale (Ghana) and Ouagadougou (Burkina Faso) over two years. The addition of biochar at 2 kg m-2 made from rice husks and corn cobs initially doubled SOC stocks but SOC losses of 35% occurred thereafter. Both biochar types had no effect on soil pH, phosphorous availability and effective cation exchange capacity (CEC) but rice husk biochar retained nitrogen (N). Irrigation with domestic waste water increased soil pH and exchangeable sodium over time. Inorganic fertilization alone acidified soils, increased available phosphorous and decreased base saturation. Organic fertilization increased SOC, N and CEC. The results from both locations demonstrate that the effects of biochar and waste water were less pronounced than reported elsewhere.

5.
Vet Microbiol ; 197: 53-61, 2016 Dec 25.
Article in English | MEDLINE | ID: mdl-27938683

ABSTRACT

Necrotic enteritis of poultry is an emerging disease of substantial economic importance, but aspects of the pathogenesis of this multi-factorial disease are still unclear. We recently demonstrated that the ability of avian strains of the causative bacterium, Clostridium perfringens, to bind to specific collagen types correlated strongly with their virulence and we postulated that binding of the pathogen to collagen types IV and V and gelatin may involve the putative adhesin-encoding gene cnaA, which is found in the VR-10B locus. In this study we have used site-directed mutagenesis to demonstrate that disruption of the cnaA gene leads to a reduction in the expression of the three genes immediately downstream of cnaA and reduced adherence to collagen types IV and V and gelatin. In addition, a cnaA mutant of strain EHE-NE18 was no longer capable of causing necrotic enteritis in a chicken disease induction model and had a significantly reduced ability to colonise the chicken intestinal mucosa. These results were confirmed by generating and analysing a similar mutant in an independent necrotic enteritis causing C. perfringens strain. This study expands our understanding of the mechanisms involved in necrotic enteritis pathogenesis by demonstrating the importance of C. perfringens adherence to extracellular matrix proteins.


Subject(s)
Bacterial Adhesion , Chickens , Clostridium Infections/veterinary , Clostridium perfringens/physiology , Enteritis/veterinary , Poultry Diseases/microbiology , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Clostridium Infections/microbiology , Clostridium Infections/pathology , Enteritis/microbiology , Enteritis/pathology , Gene Expression Regulation, Bacterial , Mutation , Poultry Diseases/pathology
6.
Sci Rep ; 6: 21256, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26876644

ABSTRACT

Bats are natural hosts to numerous viruses and have ancient origins, having diverged from other eutherian mammals early in evolution. These characteristics place them in an important position to provide insights into the evolution of the mammalian immune system and antiviral immunity. We describe the first detailed partial map of a bat (Pteropus alecto) MHC-I region with comparative analysis of the MHC-I region and genes. The bat MHC-I region is highly condensed, yet relatively conserved in organisation, and is unusual in that MHC-I genes are present within only one of the three highly conserved class I duplication blocks. We hypothesise that MHC-I genes first originated in the ß duplication block, and subsequently duplicated in a step-wise manner across the MHC-I region during mammalian evolution. Furthermore, bat MHC-I genes contain unique insertions within their peptide-binding grooves potentially affecting the peptide repertoire presented to T cells, which may have implications for the ability of bats to control infection without overt disease.


Subject(s)
Chiroptera/genetics , Conserved Sequence/genetics , Evolution, Molecular , Genes, MHC Class I/immunology , Animals , Chiroptera/immunology , Conserved Sequence/immunology , Genome , Humans , Mammals/immunology , Molecular Sequence Annotation , Peptides/genetics , Peptides/immunology , Protein Binding/genetics
7.
BMC Genomics ; 14: 595, 2013 Sep 01.
Article in English | MEDLINE | ID: mdl-24004955

ABSTRACT

BACKGROUND: In this report we have explored the genomic and microbiological basis for a sustained increase in bloodstream infections at a major Australian hospital caused by Enterococcus faecium multi-locus sequence type (ST) 203, an outbreak strain that has largely replaced a predecessor ST17 sequence type. RESULTS: To establish a ST203 reference sequence we fully assembled and annotated the genome of Aus0085, a 2009 vancomycin-resistant Enterococcus faecium (VREfm) bloodstream isolate, and the first example of a completed ST203 genome. Aus0085 has a 3.2 Mb genome, comprising a 2.9 Mb circular chromosome and six circular plasmids (2 kb-130 kb). Twelve percent of the 3222 coding sequences (CDS) in Aus0085 are not present in ST17 E. faecium Aus0004 and ST18 E. faecium TX16. Extending this comparison to an additional 12 ST17 and 14 ST203 E. faecium hospital isolate genomes revealed only six genomic regions spanning 41 kb that were present in all ST203 and absent from all ST17 genomes. The 40 CDS have predicted functions that include ion transport, riboflavin metabolism and two phosphotransferase systems. Comparison of the vancomycin resistance-conferring Tn1549 transposon between Aus0004 and Aus0085 revealed differences in transposon length and insertion site, and van locus sequence variation that correlated with a higher vancomycin MIC in Aus0085. Additional phenotype comparisons between ST17 and ST203 isolates showed that while there were no differences in biofilm-formation and killing of Galleria mellonella, ST203 isolates grew significantly faster and out-competed ST17 isolates in growth assays. CONCLUSIONS: Here we have fully assembled and annotated the first ST203 genome, and then characterized the genomic differences between ST17 and ST203 E. faecium. We also show that ST203 E. faecium are faster growing and can out-compete ST17 E. faecium. While a causal genetic basis for these phenotype differences is not provided here, this study revealed conserved genetic differences between the two clones, differences that can now be tested to explain the molecular basis for the success and emergence of ST203 E. faecium.


Subject(s)
Comparative Genomic Hybridization , Enterococcus faecium/genetics , Genome, Bacterial , Vancomycin Resistance , Animals , Australia , DNA Transposable Elements , DNA, Bacterial/genetics , Enterococcus faecium/classification , Enterococcus faecium/pathogenicity , Humans , Moths , Phenotype , Plasmids/genetics , Sequence Analysis, DNA , Virulence
8.
BMC Genomics ; 14: 169, 2013 Mar 13.
Article in English | MEDLINE | ID: mdl-23497009

ABSTRACT

BACKGROUND: The pigeon crop is specially adapted to produce milk that is fed to newly hatched young. The process of pigeon milk production begins when the germinal cell layer of the crop rapidly proliferates in response to prolactin, which results in a mass of epithelial cells that are sloughed from the crop and regurgitated to the young. We proposed that the evolution of pigeon milk built upon the ability of avian keratinocytes to accumulate intracellular neutral lipids during the cornification of the epidermis. However, this cornification process in the pigeon crop has not been characterised. RESULTS: We identified the epidermal differentiation complex in the draft pigeon genome scaffold and found that, like the chicken, it contained beta-keratin genes. These beta-keratin genes can be classified, based on sequence similarity, into several clusters including feather, scale and claw keratins. The cornified cells of the pigeon crop express several cornification-associated genes including cornulin, S100-A9 and A16-like, transglutaminase 6-like and the pigeon 'lactating' crop-specific annexin cp35. Beta-keratins play an important role in 'lactating' crop, with several claw and scale keratins up-regulated. Additionally, transglutaminase 5 and differential splice variants of transglutaminase 4 are up-regulated along with S100-A10. CONCLUSIONS: This study of global gene expression in the crop has expanded our knowledge of pigeon milk production, in particular, the mechanism of cornification and lipid production. It is a highly specialised process that utilises the normal keratinocyte cellular processes to produce a targeted nutrient solution for the young at a very high turnover.


Subject(s)
Columbidae/genetics , Gene Expression Profiling , Milk/physiology , Triglycerides/genetics , Animals , Apoptosis , Biological Evolution , Cell Differentiation , Columbidae/growth & development , Epidermal Cells , Epidermis/metabolism , Keratinocytes/cytology , Keratinocytes/metabolism , Transglutaminases/genetics , Triglycerides/biosynthesis , beta-Keratins/genetics
9.
Vet Microbiol ; 164(1-2): 85-92, 2013 May 31.
Article in English | MEDLINE | ID: mdl-23434185

ABSTRACT

The microbiota of the gastrointestinal tract is a complex community of many different species of microorganisms, dominated by bacteria. This diverse population provides the host with an extensive array of enzymes and substrates which, together with the host's metabolic capabilities, provides an extensive metabolome available for nutrient and energy collection. We investigated broiler chickens to determine whether the abundance of certain members of the microbiota was correlated with the relative ability to extract energy from a typical wheat soybean diet. A number of mostly uncultured phylotypes were identified that significantly differed in abundance between birds with high apparent metabolizable energy (AME), measured as the difference between energy consumed and energy excreted, and those with low AME. Among the phylotypes that were more prevalent in birds with high energy efficiency, most were closely associated with isolates of bacterial groups that are commonly recognized as producing enzymes that degrade cellulose and/or resistant starch. Phylotypes that were negatively correlated with performance were all unknown and uncultured, a significant number belonging to an unknown class of Firmicutes. The identification of bacterial phylotypes correlated with the efficiency of energy use opens up the possibility of harnessing these bacteria for the manipulation of the host's ability to utilize energy. Increasing the ability to convert food to body weight is of interest to the agricultural industries, while the opposite is applicable in weight management and obesity control in humans.


Subject(s)
Bacteria/classification , Cecum/microbiology , Chickens/microbiology , Energy Metabolism , Microbiota , Animal Feed , Animals , Bacteria/isolation & purification , Body Weight , Chickens/metabolism , Diet/veterinary , Male , Molecular Sequence Data
10.
J Bacteriol ; 195(3): 556-64, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23204453

ABSTRACT

In 2004, a previously undiscovered mycobacterium resembling Mycobacterium ulcerans (the agent of Buruli ulcer) was reported in an outbreak of a lethal mycobacteriosis in a laboratory colony of the African clawed frog Xenopus tropicalis. This mycobacterium makes mycolactone and is one of several strains of M. ulcerans-like mycolactone-producing mycobacteria recovered from ectotherms around the world. Here, we describe the complete 6,399,543-bp genome of this frog pathogen (previously unofficially named "Mycobacterium liflandii"), and we show that it has undergone an intermediate degree of reductive evolution between the M. ulcerans Agy99 strain and the fish pathogen Mycobacterium marinum M strain. Like M. ulcerans Agy99, it has the pMUM mycolactone plasmid, over 200 chromosomal copies of the insertion sequence IS2404, and a high proportion of pseudogenes. However, M. liflandii has a larger genome that is closer in length, sequence, and architecture to M. marinum M than to M. ulcerans Agy99, suggesting that the M. ulcerans Agy99 strain has undergone accelerated evolution. Scrutiny of the genes specifically lost suggests that M. liflandii is a tryptophan, tyrosine, and phenylalanine auxotroph. A once-extensive M. marinum-like secondary metabolome has also been diminished through reductive evolution. Our analysis shows that M. liflandii, like M. ulcerans Agy99, has the characteristics of a niche-adapted mycobacterium but also has several distinctive features in important metabolic pathways that suggest that it is responding to different environmental pressures, supporting earlier proposals that it could be considered an M. ulcerans ecotype, hence the name M. ulcerans ecovar Liflandii.


Subject(s)
Chromosomes, Bacterial/genetics , Genome, Bacterial , Mycobacterium Infections, Nontuberculous/veterinary , Mycobacterium ulcerans/genetics , Ranidae/microbiology , Animals , Anti-Bacterial Agents/pharmacology , Chromosome Mapping , Drug Resistance, Bacterial , Multigene Family , Mycobacterium Infections, Nontuberculous/microbiology , Mycobacterium ulcerans/drug effects
11.
PLoS Pathog ; 8(8): e1002836, 2012.
Article in English | MEDLINE | ID: mdl-22879820

ABSTRACT

The genus Henipavirus in the family Paramyxoviridae contains two viruses, Hendra virus (HeV) and Nipah virus (NiV) for which pteropid bats act as the main natural reservoir. Each virus also causes serious and commonly lethal infection of people as well as various species of domestic animals, however little is known about the associated mechanisms of pathogenesis. Here, we report the isolation and characterization of a new paramyxovirus from pteropid bats, Cedar virus (CedPV), which shares significant features with the known henipaviruses. The genome size (18,162 nt) and organization of CedPV is very similar to that of HeV and NiV; its nucleocapsid protein displays antigenic cross-reactivity with henipaviruses; and it uses the same receptor molecule (ephrin-B2) for entry during infection. Preliminary challenge studies with CedPV in ferrets and guinea pigs, both susceptible to infection and disease with known henipaviruses, confirmed virus replication and production of neutralizing antibodies although clinical disease was not observed. In this context, it is interesting to note that the major genetic difference between CedPV and HeV or NiV lies within the coding strategy of the P gene, which is known to play an important role in evading the host innate immune system. Unlike HeV, NiV, and almost all known paramyxoviruses, the CedPV P gene lacks both RNA editing and also the coding capacity for the highly conserved V protein. Preliminary study indicated that CedPV infection of human cells induces a more robust IFN-ß response than HeV.


Subject(s)
Chiroptera/virology , Genome, Viral/immunology , Henipavirus Infections , Henipavirus , Immune Evasion , Immunity, Innate , Animals , Antibodies, Viral/blood , Antibodies, Viral/immunology , Australia , Chiroptera/immunology , Ferrets , Guinea Pigs , Henipavirus/genetics , Henipavirus/immunology , Henipavirus/isolation & purification , Henipavirus Infections/blood , Henipavirus Infections/genetics , Henipavirus Infections/immunology , Henipavirus Infections/virology , Humans
12.
J Bacteriol ; 194(9): 2334-41, 2012 May.
Article in English | MEDLINE | ID: mdl-22366422

ABSTRACT

Vancomycin-resistant enterococci (VRE) are one of the leading causes of nosocomial infections in health care facilities around the globe. In particular, infections caused by vancomycin-resistant Enterococcus faecium are becoming increasingly common. Comparative and functional genomic studies of E. faecium isolates have so far been limited owing to the lack of a fully assembled E. faecium genome sequence. Here we address this issue and report the complete 3.0-Mb genome sequence of the multilocus sequence type 17 vancomycin-resistant Enterococcus faecium strain Aus0004, isolated from the bloodstream of a patient in Melbourne, Australia, in 1998. The genome comprises a 2.9-Mb circular chromosome and three circular plasmids. The chromosome harbors putative E. faecium virulence factors such as enterococcal surface protein, hemolysin, and collagen-binding adhesin. Aus0004 has a very large accessory genome (38%) that includes three prophage and two genomic islands absent among 22 other E. faecium genomes. One of the prophage was present as inverted 50-kb repeats that appear to have facilitated a 683-kb chromosomal inversion across the replication terminus, resulting in a striking replichore imbalance. Other distinctive features include 76 insertion sequence elements and a single chromosomal copy of Tn1549 containing the vanB vancomycin resistance element. A complete E. faecium genome will be a useful resource to assist our understanding of this emerging nosocomial pathogen.


Subject(s)
Enterococcus faecium/genetics , Enterococcus faecium/metabolism , Genome, Bacterial/genetics , Chromosomes, Bacterial , Enterococcus faecium/drug effects , Enterococcus faecium/pathogenicity , Gene Expression Regulation, Bacterial/physiology , Molecular Sequence Data , Phylogeny , Plasmids , Prophages/genetics , Vancomycin/pharmacology , Vancomycin Resistance , Virulence
13.
Appl Microbiol Biotechnol ; 96(5): 1361-9, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22249719

ABSTRACT

Analysis of model systems, for example in mice, has shown that the microbiota in the gastrointestinal tract can play an important role in the efficiency of energy extraction from diets. The study reported here aimed to determine whether there are correlations between gastrointestinal tract microbiota population structure and energy use in chickens. Efficiency in converting food into muscle mass has a significant impact on the intensive animal production industries, where feed represents the major portion of production costs. Despite extensive breeding and selection efforts, there are still large differences in the growth performance of animals fed identical diets and reared under the same conditions. Variability in growth performance presents management difficulties and causes economic loss. An understanding of possible microbiota drivers of these differences has potentially important benefits for industry. In this study, differences in cecal and jejunal microbiota between broiler chickens with extreme feed conversion capabilities were analysed in order to identify candidate bacteria that may influence growth performance. The jejunal microbiota was largely dominated by lactobacilli (over 99% of jejunal sequences) and showed no difference between the birds with high and low feed conversion ratios. The cecal microbial community displayed higher diversity, and 24 unclassified bacterial species were found to be significantly (<0.05) differentially abundant between high and low performing birds. Such differentially abundant bacteria represent target populations that could potentially be modified with prebiotics and probiotics in order to improve animal growth performance.


Subject(s)
Biota , Cecum/microbiology , Diet , Jejunum/microbiology , Metagenome , Animals , Chickens , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Molecular Sequence Data , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
14.
BMC Genomics ; 12: 452, 2011 Sep 19.
Article in English | MEDLINE | ID: mdl-21929790

ABSTRACT

BACKGROUND: Both male and female pigeons have the ability to produce a nutrient solution in their crop for the nourishment of their young. The production of the nutrient solution has been likened to lactation in mammals, and hence the product has been called pigeon 'milk'. It has been shown that pigeon 'milk' is essential for growth and development of the pigeon squab, and without it they fail to thrive. Studies have investigated the nutritional value of pigeon 'milk' but very little else is known about what it is or how it is produced. This study aimed to gain insight into the process by studying gene expression in the 'lactating' crop. RESULTS: Macroscopic comparison of 'lactating' and non-'lactating' crop reveals that the 'lactating' crop is enlarged and thickened with two very obvious lateral lobes that contain discrete rice-shaped pellets of pigeon 'milk'. This was characterised histologically by an increase in the number and depth of rete pegs extending from the basal layer of the epithelium to the lamina propria, and extensive proliferation and folding of the germinal layer into the superficial epithelium. A global gene expression profile comparison between 'lactating' crop and non-'lactating' crop showed that 542 genes are up-regulated in the 'lactating' crop, and 639 genes are down-regulated. Pathway analysis revealed that genes up-regulated in 'lactating' crop were involved in the proliferation of melanocytes, extracellular matrix-receptor interaction, the adherens junction and the wingless (wnt) signalling pathway. Gene ontology analysis showed that antioxidant response and microtubule transport were enriched in 'lactating' crop. CONCLUSIONS: There is a hyperplastic response in the pigeon crop epithelium during 'lactation' that leads to localised cellular stress and expression of antioxidant protein-encoding genes. The differentiated, cornified cells that form the pigeon 'milk' are of keratinocyte lineage and contain triglycerides that are likely endocytosed as very low density lipoprotein (VLDL) and repackaged as triglyceride in vesicles that are transported intracellularly by microtubules. This mechanism is an interesting example of the evolution of a system with analogies to mammalian lactation, as pigeon 'milk' fulfils a similar function to mammalian milk, but is produced by a different mechanism.


Subject(s)
Columbidae/genetics , Crop, Avian/metabolism , Gene Expression Profiling , Transcriptome , Animals , Cicer/genetics , Crop, Avian/anatomy & histology , Epithelium/metabolism , Female , Gene Expression Regulation , Molecular Sequence Annotation , Oligonucleotide Array Sequence Analysis
15.
Viral Immunol ; 24(1): 3-9, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21319974

ABSTRACT

Chicken anemia virus (CAV) is an economically important virus affecting the chicken meat and egg industry. CAV is characterized by anemia, lymphoid depletion, and immunosuppression. Microarrays were used to investigate the response of MDCC-MSB1 cells (MSB1) to infection with CAV at 24 and 48 h post-infection (hpi). The major genes responding to CAV infection include genes involved in inflammation, apoptosis, and antiviral activity. Several cytokines were differentially regulated at either 24 or 48 hpi, including interleukin 2 (IL-2), interleukin receptors IL-1R, IL-22R, IL-18R, and IL-7R, and interferon-α (IFN-α). While there were many genes differentially regulated in this experiment, only two genes were common to both time points, suggesting a dramatic change in gene expression over the two time points studied. The present study is the first microarray experiment to investigate CAV, and we identified a number of key pathways involved in viral infection. Overall, there were more genes upregulated at 24 hpi than at 48 hpi, including genes involved in cytokine signaling, apoptosis, and antiviral activity. The two time points were vastly different in their gene expression patterns, in that at 24 hpi there were many genes involved in the response to infection, whereas at 48 hpi there were many genes associated with apoptosis and immunosuppression.


Subject(s)
Chicken anemia virus/pathogenicity , Gene Expression Profiling , Host-Pathogen Interactions , Animals , Cell Line , Chickens , Cytokines/biosynthesis , Microarray Analysis , Time Factors
16.
J Bacteriol ; 192(20): 5556-7, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20729356

ABSTRACT

Community methicillin-resistant Staphylococcus aureus (cMRSA) is an emerging issue that has resulted in multiple worldwide epidemics. We report the first complete genome sequence of an ST93-MRSA-IV clinical isolate that caused severe invasive infection and a familial outbreak of skin infection. This isolate is a representative of the most common Australian clone of cMRSA that is more distantly related to the previously sequenced genomes of S. aureus.


Subject(s)
Genome, Bacterial , Methicillin-Resistant Staphylococcus aureus/classification , Methicillin-Resistant Staphylococcus aureus/genetics , Community-Acquired Infections , Humans , Molecular Sequence Data , Staphylococcal Infections/epidemiology , Staphylococcal Infections/microbiology
17.
BMC Genomics ; 10 Suppl 2: S3, 2009 Jul 14.
Article in English | MEDLINE | ID: mdl-19607654

ABSTRACT

BACKGROUND: With the threat of emerging infectious diseases such as avian influenza, whose natural hosts are thought to be a variety of wild water birds including duck, we are armed with very few genomic resources to investigate large scale immunological gene expression studies in avian species. Multiple options exist for conducting large gene expression studies in chickens and in this study we explore the feasibility of using one of these tools to investigate gene expression in other avian species. RESULTS: In this study we utilised a whole genome long oligonucleotide chicken microarray to assess the utility of cross species hybridisation (CSH). We successfully hybridised a number of different avian species to this array, obtaining reliable signals. We were able to distinguish ducks that were infected with avian influenza from uninfected ducks using this microarray platform. In addition, we were able to detect known chicken immunological genes in all of the hybridised avian species. CONCLUSION: Cross species hybridisation using long oligonucleotide microarrays is a powerful tool to study the immune response in avian species with little available genomic information. The present study validated the use of the whole genome long oligonucleotide chicken microarray to investigate gene expression in a range of avian species.


Subject(s)
Chickens/genetics , Comparative Genomic Hybridization/methods , Genomics/methods , Oligonucleotide Array Sequence Analysis/methods , Animals , Ducks/genetics , Ducks/immunology , Gene Expression Profiling , Influenza A Virus, H5N1 Subtype , Influenza in Birds/genetics , Influenza in Birds/immunology , Poultry Diseases/genetics , Poultry Diseases/immunology , Sequence Analysis, DNA , Species Specificity , Spleen/immunology , Spleen/metabolism
18.
Vaccine ; 25(14): 2643-55, 2007 Mar 30.
Article in English | MEDLINE | ID: mdl-17239501

ABSTRACT

Protective sequences of Chlamydia muridarum were identified as potential vaccine candidates by screening a genomic DNA expression library and assessing the immune responses of mice immunized with individual library clones following vaginal challenge with live Chlamydia. Groups of female BALB/c mice were immunized intra-abdominally by gene gun delivery of DNA three times at three-weekly intervals with individual library clones expressing chlamydial protein fragments and humoral and cell-mediated immune responses were evaluated. Chlamydia-specific cytokines including tumour necrosis factor-alpha (TNF-alpha) interleukin-10 (IL-10), interleukin-4 (IL-4), interleukin-12 (IL-12) and interferon-gamma (IFN-gamma) were detected in mice immunized either with selected DNA clones in spleen cells (0.2-135.2 pg/mL) or lymph nodes (0.15-84.9 pg/mL). The most protective antigen identified was TC0512, a putative outer membrane protein (OMP). Immunization of mice with this clone elicited T-helper type-1 (Th-1) and T-helper type-2 (Th-2) cytokines as well as and IgG1 and IgG2a in sera of these animals. Ten days after the last immunization, animals were challenged intra-vaginally with 5 x 10(4) inclusion-forming units (IFUs) of C. muridarum. At 9 days following challenge TC0512 showed a 73% reduction in the number of recoverable Chlamydia compared with vector only immunized controls. Six additional clones were identified that also conferred varying degrees of protection against live chlamydial challenge. Significant protection against the initial stages of infection was shown by two DNA clones (encoding hypothetical proteins) and five clones showed enhanced clearance of chlamydial infection following DNA immunization and live chlamydial challenge. These results demonstrate that the C. muridarum genome can be screened for individual vaccine candidates by genetic immunization and that the screen produces novel and partially protective vaccine candidates.


Subject(s)
Bacterial Vaccines/immunology , Chlamydia Infections/prevention & control , Chlamydia muridarum/immunology , Vaccines, DNA/immunology , Vaginal Diseases/prevention & control , Animals , Antibodies, Bacterial/blood , Biolistics , Female , Gene Library , Immunization , Interleukin-10/biosynthesis , Interleukin-4/biosynthesis , Mice , Mice, Inbred BALB C , Sequence Analysis, DNA , Tumor Necrosis Factor-alpha/biosynthesis , Vagina/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...