Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Res ; 84(1): 133-153, 2024 01 02.
Article in English | MEDLINE | ID: mdl-37855660

ABSTRACT

Enhancers are noncoding regulatory DNA regions that modulate the transcription of target genes, often over large distances along with the genomic sequence. Enhancer alterations have been associated with various pathological conditions, including cancer. However, the identification and characterization of somatic mutations in noncoding regulatory regions with a functional effect on tumorigenesis and prognosis remain a major challenge. Here, we present a strategy for detecting and characterizing enhancer mutations in a genome-wide analysis of patient cohorts, across three lung cancer subtypes. Lung tissue-specific enhancers were defined by integrating experimental data and public epigenomic profiles, and the genome-wide enhancer-target gene regulatory network of lung cells was constructed by integrating chromatin three-dimensional architecture data. Lung cancers possessed a similar mutation burden at tissue-specific enhancers and exons but with differences in their mutation signatures. Functionally relevant alterations were prioritized on the basis of the pathway-level integration of the effect of a mutation and the frequency of mutations on individual enhancers. The genes enriched for mutated enhancers converged on the regulation of key biological processes and pathways relevant to tumor biology. Recurrent mutations in individual enhancers also affected the expression of target genes, with potential relevance for patient prognosis. Together, these findings show that noncoding regulatory mutations have a potential relevance for cancer pathogenesis and can be exploited for patient classification. SIGNIFICANCE: Mapping enhancer-target gene regulatory interactions and analyzing enhancer mutations at the level of their target genes and pathways reveal convergence of recurrent enhancer mutations on biological processes involved in tumorigenesis and prognosis.


Subject(s)
Gene Regulatory Networks , Lung Neoplasms , Humans , Enhancer Elements, Genetic/genetics , Lung Neoplasms/genetics , Mutation , Carcinogenesis/genetics
2.
Nucleic Acids Res ; 49(17): e97, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34197622

ABSTRACT

A growing amount of evidence in literature suggests that germline sequence variants and somatic mutations in non-coding distal regulatory elements may be crucial for defining disease risk and prognostic stratification of patients, in genetic disorders as well as in cancer. Their functional interpretation is challenging because genome-wide enhancer-target gene (ETG) pairing is an open problem in genomics. The solutions proposed so far do not account for the hierarchy of structural domains which define chromatin three-dimensional (3D) architecture. Here we introduce a change of perspective based on the definition of multi-scale structural chromatin domains, integrated in a statistical framework to define ETG pairs. In this work (i) we develop a computational and statistical framework to reconstruct a comprehensive map of ETG pairs leveraging functional genomics data; (ii) we demonstrate that the incorporation of chromatin 3D architecture information improves ETG pairing accuracy and (iii) we use multiple experimental datasets to extensively benchmark our method against previous solutions for the genome-wide reconstruction of ETG pairs. This solution will facilitate the annotation and interpretation of sequence variants in distal non-coding regulatory elements. We expect this to be especially helpful in clinically oriented applications of whole genome sequencing in cancer and undiagnosed genetic diseases research.


Subject(s)
Algorithms , Chromatin/genetics , Computational Biology/methods , Enhancer Elements, Genetic/genetics , Gene Expression Regulation , Cell Line , Cell Line, Tumor , Cells, Cultured , Chromatin/metabolism , Epistasis, Genetic , Gene Expression Profiling/methods , Genome-Wide Association Study/methods , Genomics/methods , Humans , Neoplasms/genetics , Neoplasms/pathology , Polymorphism, Single Nucleotide , Promoter Regions, Genetic/genetics , Quantitative Trait Loci/genetics
3.
Comput Struct Biotechnol J ; 17: 821-831, 2019.
Article in English | MEDLINE | ID: mdl-31316726

ABSTRACT

Enhancers are non-coding regulatory elements that are distant from their target gene. Their characterization still remains elusive especially due to challenges in achieving a comprehensive pairing of enhancers and target genes. A number of computational biology solutions have been proposed to address this problem leveraging the increasing availability of functional genomics data and the improved mechanistic understanding of enhancer action. In this review we focus on computational methods for genome-wide definition of enhancer-target gene pairs. We outline the different classes of methods, as well as their main advantages and limitations. The types of information integrated by each method, along with details on their applicability are presented and discussed. We especially highlight the technical challenges that are still unresolved and hamper the effective achievement of a satisfactory and comprehensive solution. We expect this field will keep evolving in the coming years due to the ever-growing availability of data and increasing insights into enhancers crucial role in regulating genome functionality.

4.
Database (Oxford) ; 2018: 1-10, 2018 01 01.
Article in English | MEDLINE | ID: mdl-30184194

ABSTRACT

South Asia is home to $\sim $20% of the world population and characterized by distinct ethnic, linguistic, cultural and genetic lineages. Only limited representative samples from the region have found its place in large population-scale international genome projects. The recent availability of genome scale data from multiple populations and datasets from South Asian countries in public domain motivated us to integrate the data into a comprehensive resource. In the present study, we have integrated a total of six datasets encompassing 1213 human exomes and genomes to create a compendium of 154 814 557 genetic variants and adding a total of 69 059 255 novel variants. The variants were systematically annotated using public resources and along with the allele frequencies are available as a browsable-online resource South Asian genomes and exomes. As a proof of principle application of the data and resource for genetic epidemiology, we have analyzed the pathogenic genetic variants causing retinitis pigmentosa. Our analysis reveals the genetic landscape of the disease and suggests subset of genetic variants to be highly prevalent in South Asia.


Subject(s)
Asian People/genetics , Exome/genetics , Genetic Variation , Genome, Human , Databases, Genetic , Gene Frequency , Humans , Molecular Epidemiology , Molecular Sequence Annotation , Publications
SELECTION OF CITATIONS
SEARCH DETAIL
...