Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-35580804

ABSTRACT

Many of the modern advances in cellular biology have been made by the expression of engineered constructs with epitope tags for subsequent biochemical investigations. While the utility of epitope tags has permitted insights in cellular and animal models, these are often expressed using traditional transgenic approaches. Using the CRISPR/Cas9 system and homology directed repair we recombine a single myc epitope sequence following the start codon of the zebrafish ortholog of TARDBP (TDP-43). TDP-43 is an RNA binding protein that is involved in the neurodegenerative disease amyotrophic lateral sclerosis and frontotemporal dementia. We report that zebrafish expressing the myc-tardbp engendered allele produced a stable protein that was detected by both western blot and immunofluorescence. Furthermore, both heterozygous and homozygous carriers of the myc-tardbp allele developed to sexual maturity. We propose that the methodology used here will be useful for zebrafish researchers and other comparative animal biologists interested in developing animal models expressing endogenously tagged proteins.


Subject(s)
Neurodegenerative Diseases , Zebrafish , Animals , CRISPR-Cas Systems , DNA-Binding Proteins/genetics , Epitopes/metabolism , Neurodegenerative Diseases/genetics , Zebrafish/genetics , Zebrafish/metabolism
2.
Sci Rep ; 9(1): 9122, 2019 06 24.
Article in English | MEDLINE | ID: mdl-31235725

ABSTRACT

Though there is compelling evidence that de-innervation of neuromuscular junctions (NMJ) occurs early in amyotrophic lateral sclerosis (ALS), defects arising at synapses in the spinal cord remain incompletely understood. To investigate spinal cord synaptic dysfunction, we took advantage of a zebrafish larval model and expressed either wild type human TARDBP (wtTARDBP) or the ALS-causing G348C variant (mutTARDBP). The larval zebrafish is ideally suited to examine synaptic connectivity between descending populations of neurons and spinal cord motoneurons as a fully intact spinal cord is preserved during experimentation. Here we provide evidence that the tail-beat motor pattern is reduced in both frequency and duration in larvae expressing mutTARDBP. In addition, we report that motor-related synaptic depolarizations in primary motoneurons of the spinal cord are shorter in duration and fewer action potentials are evoked in larvae expressing mutTARDBP. To more thoroughly examine spinal cord synaptic dysfunction in our ALS model, we isolated AMPA/kainate-mediated glutamatergic miniature excitatory post-synaptic currents in primary motoneurons and found that in addition to displaying a larger amplitude, the frequency of quantal events was higher in larvae expressing mutTARDBP when compared to larvae expressing wtTARDBP. In a final series of experiments, we optogenetically drove neuronal activity in the hindbrain and spinal cord population of descending ipsilateral glutamatergic interneurons (expressing Chx10) using the Gal4-UAS system and found that larvae expressing mutTARDBP displayed abnormal tail-beat patterns in response to optogenetic stimuli and augmented synaptic connectivity with motoneurons. These findings indicate that expression of mutTARDBP results in functionally altered glutamatergic synapses in the spinal cord.


Subject(s)
DNA-Binding Proteins/genetics , Electrophysiological Phenomena , Motor Neurons/metabolism , Mutation , Spinal Cord/physiology , Synapses/physiology , Zebrafish , Animals , Gene Expression , Glutamic Acid/metabolism , Humans , Motor Neurons/cytology , Synapses/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...