Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Appl Environ Microbiol ; 89(6): e0215122, 2023 06 28.
Article in English | MEDLINE | ID: mdl-37219435

ABSTRACT

Timely detection of persistent and emerging pathogens is critical to controlling disease spread, particularly in high-density populations with increased contact between individuals and limited-to-no ability to quarantine. Standard molecular diagnostic tests for surveying pathogenic microbes have provided the sensitivity needed for early detection, but lag in time-to-result leading to delayed action. On-site diagnostics alleviate this lag, but current technologies are less sensitive and adaptable than lab-based molecular methods. Towards the development of improved on-site diagnostics, we demonstrated the adaptability of a loop-mediated isothermal amplification-CRISPR coupled technology for detecting DNA and RNA viruses that have greatly impacted shrimp populations worldwide; White Spot Syndrome Virus and Taura Syndrome Virus. Both CRISPR-based fluorescent assays we developed showed similar sensitivity and accuracy for viral detection and load quantification to real-time PCR. Additionally, both assays specifically targeted their respective virus with no false positives detected in animals infected with other common pathogens or in certified specific pathogen-free animals. IMPORTANCE The Pacific white shrimp (Penaeus vannamei) is one of the most valuable aquaculture species in the world but has suffered major economic losses from outbreaks of White Spot Syndrome Virus and Taura Syndrome Virus. Rapid detection of these viruses can improve aquaculture practices by enabling more timely action to be taken to combat disease outbreaks. Highly sensitive, specific, and robust CRISPR-based diagnostic assays such as those developed here have the potential to revolutionize disease management in agriculture and aquaculture helping to promote global food security.


Subject(s)
Penaeidae , RNA Viruses , Animals , Sensitivity and Specificity , RNA Viruses/genetics , DNA , RNA
2.
Front Microbiol ; 13: 955032, 2022.
Article in English | MEDLINE | ID: mdl-36160233

ABSTRACT

While freshwater cyanobacteria are traditionally thought to be limited by the availability of phosphorus (P), fixed nitrogen (N) supply can promote the growth and/or toxin production of some genera. This study characterizes how growth on N2 (control), nitrate (NO3 -), ammonium (NH4 +), and urea as well as P limitation altered the growth, toxin production, N2 fixation, and gene expression of an anatoxin-a (ATX-A) - producing strain of Dolichospermum sp. 54. The transcriptomes of fixed N and P-limited cultures differed significantly from those of fixed N-deplete, P-replete (control) cultures, while the transcriptomes of P-replete cultures amended with either NH4 + or NO3 - were not significantly different relative to those of the control. Growth rates of Dolichospermum (sp. 54) were significantly higher when grown on fixed N relative to without fixed N; growth on NH4 + was also significantly greater than growth on NO3 -. NH4 + and urea significantly lowered N2 fixation and nifD gene transcript abundance relative to the control while cultures amended with NO3 - exhibited N2 fixation and nifD gene transcript abundance that was not different from the control. Cultures grown on NH4 + exhibited the lowest ATX-A content per cell and lower transcript abundance of genes associated ATX-A synthesis (ana), while the abundance of transcripts of several ana genes were highest under fixed N and P - limited conditions. The significant negative correlation between growth rate and cellular anatoxin quota as well as the significantly higher number of transcripts of ana genes in cultures deprived of fixed N and P relative to P-replete cultures amended with NH4 + suggests ATX-A was being actively synthesized under P limitation. Collectively, these findings indicate that management strategies that do not regulate fixed N loading will leave eutrophic water bodies vulnerable to more intense and toxic (due to increased biomass) blooms of Dolichospermum.

3.
Nat Ecol Evol ; 6(2): 218-229, 2022 02.
Article in English | MEDLINE | ID: mdl-35058612

ABSTRACT

Complex assemblages of microbes in the surface ocean are responsible for approximately half of global carbon fixation. The persistence of high taxonomic diversity despite competition for a small suite of relatively homogeneously distributed nutrients, that is, 'the paradox of the plankton', represents a long-standing challenge for ecological theory. Here we find evidence consistent with temporal niche partitioning of nitrogen assimilation processes over a diel cycle in the North Pacific Subtropical Gyre. We jointly analysed transcript abundances, lipids and metabolites and discovered that a small number of diel archetypes can explain pervasive periodic dynamics. Metabolic pathway analysis of identified diel signals revealed asynchronous timing in the transcription of nitrogen uptake and assimilation genes among different microbial groups-cyanobacteria, heterotrophic bacteria and eukaryotes. This temporal niche partitioning of nitrogen uptake emerged despite synchronous transcription of photosynthesis and central carbon metabolism genes and associated macromolecular abundances. Temporal niche partitioning may be a mechanism by which microorganisms in the open ocean mitigate competition for scarce resources, supporting community coexistence.


Subject(s)
Cyanobacteria , Microbiota , Cyanobacteria/genetics , Nitrogen/metabolism , Plankton/genetics , Seawater
4.
Environ Microbiol ; 23(8): 4807-4822, 2021 08.
Article in English | MEDLINE | ID: mdl-34309154

ABSTRACT

The physical and biological dynamics that influence phytoplankton communities in the oligotrophic ocean are complex, changing across broad temporal and spatial scales. Eukaryotic phytoplankton (e.g., diatoms), despite their relatively low abundance in oligotrophic waters, are responsible for a large component of the organic matter flux to the ocean interior. Mesoscale eddies can impact both microbial community structure and function, enhancing primary production and carbon export, but the mechanisms that underpin these dynamics are still poorly understood. Here, mesoscale eddy influences on the taxonomic diversity and expressed functional profiles of surface communities of microeukaryotes and particle-associated heterotrophic bacteria from the North Pacific Subtropical Gyre were assessed over 2 years (spring 2016 and summer 2017). The taxonomic diversity of the microeukaryotes significantly differed by eddy polarity (cyclonic versus anticyclonic) and between sampling seasons/years and was significantly correlated with the taxonomic diversity of particle-associated heterotrophic bacteria. The expressed functional profile of these taxonomically distinct microeukaryotes varied consistently as a function of eddy polarity, with cyclones having a different expression pattern than anticyclones, and between sampling seasons/years. These data suggest that mesoscale forcing, and associated changes in biogeochemistry, could drive specific physiological responses in the resident microeukaryote community, independent of species composition.


Subject(s)
Diatoms , Microbiota , Diatoms/genetics , Microbiota/genetics , Pacific Ocean , Phytoplankton/genetics , Seasons , Seawater
5.
ISME J ; 15(2): 520-533, 2021 02.
Article in English | MEDLINE | ID: mdl-33033374

ABSTRACT

Sunlight is the most important environmental control on diel fluctuations in phytoplankton activity, and understanding diel microbial processes is essential to the study of oceanic biogeochemical cycles. Yet, little is known about the in situ temporal dynamics of phytoplankton metabolic activities and their coordination across different populations. We investigated diel orchestration of phytoplankton activity in photosynthesis, photoacclimation, and photoprotection by analyzing pigment and quinone distributions in combination with metatranscriptomes in surface waters of the North Pacific Subtropical Gyre (NPSG). We found diel cycles in pigment abundances resulting from the balance of their synthesis and consumption. These dynamics suggest that night represents a metabolic recovery phase, refilling cellular pigment stores, while photosystems are remodeled towards photoprotection during daytime. Transcript levels of genes involved in photosynthesis and pigment metabolism had synchronized diel expression patterns among all taxa, reflecting the driving force light imparts upon photosynthetic organisms in the ocean, while other environmental factors drive niche differentiation. For instance, observed decoupling of diel oscillations in transcripts and related pigments indicates that pigment abundances are modulated by environmental factors extending beyond gene expression/regulation reinforcing the need to combine metatranscriptomics with proteomics and metabolomics to fully understand the timing of these critical processes in situ.


Subject(s)
Phytoplankton , Seawater , Gene Expression Regulation , Oceans and Seas
6.
Environ Microbiol ; 22(1): 381-396, 2020 01.
Article in English | MEDLINE | ID: mdl-31709692

ABSTRACT

Emiliania huxleyi is a calcifying haptophyte, contributing to both the organic and inorganic marine carbon cycles. In marine ecosystems, light is a major driver of phytoplankton physiology and ultimately carbon flow through the ecosystem. Here, we analysed a Lagrangian time-series of metatranscriptomes collected in the North Pacific Subtropical Gyre (NPSG) to examine how in situ populations of E. huxleyi modulate gene expression over day-night transitions. Many E. huxleyi contigs had a diel expression pattern, with 61% of contigs clustering into modules with statistically significant diel periodicity. Contigs involved in processes that build up energy stores, like carbon fixation and lipid synthesis, peaked around dawn. In contrast, contigs involved in processes that released energy stores, like respiration and lipid degradation, peaked mid-day and towards dusk. These patterns suggest an orchestrated cycle of building, then consuming energy stores in E. huxleyi populations in the NPSG. Selected contigs related to the cell cycle also exhibited significant diel periodicity consistent with phased modulations of division observed in culture. Overall, these patterns of gene expression suggest a daily metabolic cascade that could contribute to both organic and inorganic carbon flow in this nutrient depleted ecosystem.


Subject(s)
Circadian Rhythm/physiology , Energy Metabolism/physiology , Gene Expression Regulation/physiology , Haptophyta/metabolism , Calcium/metabolism , Carbon/metabolism , Carbon Cycle/physiology , Ecosystem , Gene Expression Regulation/genetics , Haptophyta/classification , Haptophyta/genetics , Lipid Metabolism/physiology , Pacific Ocean , Phytoplankton/classification , Phytoplankton/metabolism
7.
Science ; 365(6457): 1040-1044, 2019 09 06.
Article in English | MEDLINE | ID: mdl-31488692

ABSTRACT

From June to August 2018, the eruption of Kilauea volcano on the island of Hawai'i injected millions of cubic meters of molten lava into the nutrient-poor waters of the North Pacific Subtropical Gyre. The lava-impacted seawater was characterized by high concentrations of metals and nutrients that stimulated phytoplankton growth, resulting in an extensive plume of chlorophyll a that was detectable by satellite. Chemical and molecular evidence revealed that this biological response hinged on unexpectedly high concentrations of nitrate, despite the negligible quantities of nitrogen in basaltic lava. We hypothesize that the high nitrate was caused by buoyant plumes of nutrient-rich deep waters created by the substantial input of lava into the ocean. This large-scale ocean fertilization was therefore a unique perturbation event that revealed how marine ecosystems respond to exogenous inputs of nutrients.


Subject(s)
Phytoplankton/growth & development , Seawater/chemistry , Volcanic Eruptions , Chlorophyll A/analysis , Chlorophyll A/metabolism , Eutrophication , Hawaii , Metals/analysis , Nitrates/analysis , Nitrogen/analysis , Pacific Ocean , Phytoplankton/metabolism , Seawater/analysis
8.
Ecol Evol ; 9(8): 4931-4948, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31031955

ABSTRACT

Global ocean change threatens marine life, yet a mechanistic understanding of how organisms are affected by specific stressors is poorly understood. Here, we identify and compare the unique and common transcriptomic responses of an organism experiencing widespread fisheries declines, Argopecten irradians (bay scallop) exposed to multiple stressors including high pCO2, elevated temperature, and two species of harmful algae, Cochlodinium (aka Margalefidinium) polykrikoides and Aureococcus anophagefferens using high-throughput sequencing (RNA-seq). After 48 hr of exposure, scallop transcriptomes revealed distinct expression profiles with larvae exposed to harmful algae (C. polykrikoides and A. anophagefferens) displaying broader responses in terms of significantly and differentially expressed (DE) transcripts (44,922 and 4,973; respectively) than larvae exposed to low pH or elevated temperature (559 and 467; respectively). Patterns of expression between larvae exposed to each harmful algal treatment were, however, strikingly different with larvae exposed to A. anophagefferens displaying large, significant declines in the expression of transcripts (n = 3,615; 87% of DE transcripts) whereas exposure to C. polykrikoides increased the abundance of transcripts, more than all other treatments combined (n = 43,668; 97% of DE transcripts). Larvae exposed to each stressor up-regulated a common set of 21 genes associated with protein synthesis, cellular metabolism, shell growth, and membrane transport. Larvae exposed to C. polykrikoides displayed large increases in antioxidant-associated transcripts, whereas acidification-exposed larvae increased abundance of transcripts associated with shell formation. After 10 days of exposure, each harmful algae caused declines in survival that were significantly greater than all other treatments. Collectively, this study reveals the common and unique transcriptional responses of bivalve larvae to stressors that promote population declines within coastal zones, providing insight into the means by which they promote mortality as well as traits possessed by bay scallops that enable potential resistance.

9.
ISME J ; 13(1): 118-131, 2019 01.
Article in English | MEDLINE | ID: mdl-30116042

ABSTRACT

In the surface ocean, light fuels photosynthetic carbon fixation of phytoplankton, playing a critical role in ecosystem processes including carbon export to the deep sea. In oligotrophic oceans, diatom-diazotroph associations (DDAs) play a keystone role in ecosystem function because diazotrophs can provide otherwise scarce biologically available nitrogen to the diatom host, fueling growth and subsequent carbon sequestration. Despite their importance, relatively little is known about the nature of these associations in situ. Here we used metatranscriptomic sequencing of surface samples from the North Pacific Subtropical Gyre (NPSG) to reconstruct patterns of gene expression for the diazotrophic symbiont Richelia and we examined how these patterns were integrated with those of the diatom host over day-night transitions. Richelia exhibited significant diel signals for genes related to photosynthesis, N2 fixation, and resource acquisition, among other processes. N2 fixation genes were significantly co-expressed with host nitrogen uptake and metabolism, as well as potential genes involved in carbon transport, which may underpin the exchange of nitrogen and carbon within this association. Patterns of expression suggested cell division was integrated between the host and symbiont across the diel cycle. Collectively these data suggest that symbiont-host physiological ecology is strongly interconnected in the NPSG.


Subject(s)
Cyanobacteria/physiology , Diatoms/microbiology , Nitrogen Fixation/physiology , Carbon/metabolism , Carbon Sequestration , Cyanobacteria/genetics , Ecosystem , Gene Expression Regulation , Nitrogen/metabolism , Oceans and Seas , Phytoplankton/metabolism , Seawater , Symbiosis
10.
Aquat Toxicol ; 194: 18-26, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29132031

ABSTRACT

Freshwater cyanobacterial harmful algal blooms (CyanoHABs) caused by algae in the genus Microcystis have been increasing in frequency and severity in recent decades. Microcystis blooms threaten aquatic organisms through effects associated with the rapid increase of biomass and the production of the hepatotoxin microcystin (MC) by toxic strains. Among fish, effects of blooms are likely to be more severe for early life stages, and physiological impacts on this life stage could significantly impact recruitment and fish populations. This study explores the effects of Microcystis blooms on the development of fish using the model organism, the Japanese medaka (Oryzias latipes), under realistic exposure conditions. Medaka embryos were exposed to natural blooms collected from New York City (USA) lakes, lab cultures of Microcystis, and MC-LR solutions. Field collected samples were more toxic than lab cultures (even when compared at the same algal density or MC concentration), causing decreased survival, premature time to hatch, reduced body length, yolk sac edema, and decreased heart rate, while lab culture exposures only resulted in bradycardia. Heart rate was the most sensitive endpoint measured, being depressed in embryos exposed to both lab cultures and field collected blooms. Generalized linear model analysis indicated bradycardia was statistically associated with both cell densities of blooms and MC concentrations, while single factor analysis indicated that MC concentrations had a stronger correlation compared to cell densities. However, MC exposure could not fully explain the effects observed, as exposures to MC-LR solutions alone were not able to reduce heart rate as severely as algal exposures. Collectively, these experiments indicate that factors beyond exposure to MC or even isolated Microcystis strains influence heart rate of fish exposed to Microcystis blooms. Enhanced mortality, depressed heart rate, and abnormal development observed in response to environmentally realistic exposures of Microcystis blooms could affect success of fish at both individual or population levels.


Subject(s)
Life Cycle Stages/drug effects , Microcystins/toxicity , Microcystis/metabolism , Oryzias/physiology , Water Pollutants, Chemical/toxicity , Animals , Body Size/drug effects , Embryo, Nonmammalian/drug effects , Embryo, Nonmammalian/physiology , Harmful Algal Bloom/physiology , Heart Rate/drug effects , Marine Toxins , Oryzias/growth & development
11.
Front Microbiol ; 8: 1279, 2017.
Article in English | MEDLINE | ID: mdl-28769884

ABSTRACT

The concentration and composition of bioavailable nitrogen (N) and phosphorus (P) in the upper ocean shape eukaryotic phytoplankton communities and influence their physiological responses. Phytoplankton are known to exhibit similar physiological responses to limiting N and P conditions such as decreased growth rates, chlorosis, and increased assimilation of N and P. Are these responses similar at the molecular level across multiple species? To interrogate this question, five species from biogeochemically important, bloom-forming taxa (Bacillariophyta, Dinophyta, and Haptophyta) were grown under similar low N, low P, and replete nutrient conditions to identify transcriptional patterns and associated changes in biochemical pools related to N and P stress. Metabolic profiles, revealed through the transcriptomes of these taxa, clustered together based on species rather than nutrient stressor, suggesting that the global metabolic response to nutrient stresses was largely, but not exclusively, species-specific. Nutrient stress led to few transcriptional changes in the two dinoflagellates, consistent with other research. An orthologous group analysis examined functionally conserved (i.e., similarly changed) responses to nutrient stress and therefore focused on the diatom and haptophytes. Most conserved ortholog changes were specific to a single nutrient treatment, but a small number of orthologs were similarly changed under both N and P stress in 2 or more species. Many of these orthologs were related to photosynthesis and may represent generalized stress responses. A greater number of orthologs were conserved across more than one species under low P compared to low N. Screening the conserved orthologs for functions related to N and P metabolism revealed increased relative abundance of orthologs for nitrate, nitrite, ammonium, and amino acid transporters under N stress, and increased relative abundance of orthologs related to acquisition of inorganic and organic P substrates under P stress. Although the global transcriptional responses were dominated by species-specific changes, the analysis of conserved responses revealed functional similarities in resource acquisition pathways among different phytoplankton taxa. This overlap in nutrient stress responses observed among species may be useful for tracking the physiological ecology of phytoplankton field populations.

12.
Appl Environ Microbiol ; 83(5)2017 03 01.
Article in English | MEDLINE | ID: mdl-28003198

ABSTRACT

The bloom-forming, toxic cyanobacterium Microcystis synthesizes multiple secondary metabolites and has been shown to deter zooplankton grazing. However, the biochemical and/or molecular basis by which Microcystis deters zooplankton remains unclear. This global transcriptomic study explored the response of Microcystis to direct and indirect exposures to multiple densities of two cladoceran grazers, Daphnia pulex and D. magna Higher densities of both daphnids significantly reduced Microcystis cell densities and elicited a stronger transcriptional response in Microcystis While many putative grazer deterrence genes (encoding microcystin, aeruginosin, cyanopeptolin, and microviridin) were largely unaffected by zooplankton, transcripts for heat shock proteins (hsp) increased in abundance. Beyond metabolites and hsp, large increases in the abundances of transcripts from photosynthetic processes were observed, evidencing energy acquisition pathways were stimulated by grazing. In addition, transcripts of genes associated with the production of extracellular polysaccharides and gas vesicles significantly increased in abundance. These genes have been associated with colony formation and may have been invoked to deter grazers. Collectively, this study demonstrates that daphnid grazers induce a significant transcriptomic response in Microcystis, suggesting this cyanobacterium upregulates specific biochemical pathways to adapt to predation.IMPORTANCE This work explores the transcriptomic responses of Microcystis aeruginosa following exposure to grazing by two cladocerans, Daphnia magna and D. pulex Contrary to previous hypotheses, Microcystis did not employ putative grazing deterrent secondary metabolites in response to the cladocerans, suggesting they may have other roles within the cell, such as oxidative stress protection. The transcriptional metabolic signature during intense grazing was largely reflective of a growth and stress response, although increasing abundances of transcripts encoding extracellular polysaccharides and gas vesicles were potentially related to predator avoidance.


Subject(s)
Microcystis/physiology , Transcriptome/physiology , Zooplankton/physiology , Animals , Daphnia/drug effects , Daphnia/growth & development , Daphnia/physiology , Depsipeptides , Gene Expression Regulation, Bacterial , Heat-Shock Proteins , Microcystins , Microcystis/genetics , Microcystis/growth & development , Microcystis/metabolism , Oligopeptides , Peptides, Cyclic , Photosynthesis , RNA, Bacterial , Secondary Metabolism/genetics , Zooplankton/growth & development
13.
Harmful Algae ; 54: 4-20, 2016 04.
Article in English | MEDLINE | ID: mdl-28073480

ABSTRACT

This review summarizes the present state of knowledge regarding the toxic, bloom-forming cyanobacterium, Microcystis, with a specific focus on its geographic distribution, toxins, genomics, phylogeny, and ecology. A global analysis found documentation suggesting geographic expansion of Microcystis, with recorded blooms in at least 108 countries, 79 of which have also reported the hepatatoxin microcystin. The production of microcystins (originally "Fast-Death Factor") by Microcystis and factors that control synthesis of this toxin are reviewed, as well as the putative ecophysiological roles of this metabolite. Molecular biological analyses have provided significant insight into the ecology and physiology of Microcystis, as well as revealed the highly dynamic, and potentially unstable, nature of its genome. A genetic sequence analysis of 27 Microcystis species, including 15 complete/draft genomes are presented. Using the strictest biological definition of what constitutes a bacterial species, these analyses indicate that all Microcystis species warrant placement into the same species complex since the average nucleotide identity values were above 95%, 16S rRNA nucleotide identity scores exceeded 99%, and DNA-DNA hybridization was consistently greater than 70%. The review further provides evidence from around the globe for the key role that both nitrogen and phosphorus play in controlling Microcystis bloom dynamics, and the effect of elevated temperature on bloom intensification. Finally, highlighted is the ability of Microcystis assemblages to minimize their mortality losses by resisting grazing by zooplankton and bivalves, as well as viral lysis, and discuss factors facilitating assemblage resilience.


Subject(s)
Ecosystem , Genome, Bacterial/genetics , Microcystis/physiology , Animals , Genomics , Microcystis/genetics , Phylogeography , RNA, Ribosomal, 16S/genetics
14.
Harmful Algae ; 54: 87-97, 2016 04.
Article in English | MEDLINE | ID: mdl-28073483

ABSTRACT

Historically, phosphorus (P) has been considered the primary limiting nutrient for phytoplankton assemblages in freshwater ecosystems. This review, supported by new findings from Lake Erie, highlights recent molecular, laboratory, and field evidence that the growth and toxicity of some non-diazotrophic blooms of cyanobacteria can be controlled by nitrogen (N). Cyanobacteria such as Microcystis possess physiological adaptations that allow them to dominate low-P surface waters, and in temperate lakes, cyanobacterial densities can be controlled by N availability. Beyond total cyanobacterial biomass, N loading has been shown to selectively promote the abundance of Microcystis and Planktothrix strains capable of synthesizing microcystins over strains that do not possess this ability. Among strains of cyanobacteria capable of synthesizing the N-rich microcystins, cellular toxin quotas have been found to depend upon exogenous N supplies. Herein, multi-year observations from western Lake Erie are presented demonstrating that microcystin concentrations peak in parallel with inorganic N, but not orthophosphate, concentrations and are significantly lower (p<0.01) during years of reduced inorganic nitrogen loading and concentrations. Collectively, this information underscores the importance of N as well as P in controlling toxic cyanobacteria blooms. Furthermore, it supports the premise that management actions to reduce P in the absence of concurrent restrictions on N loading may not effectively control the growth and/or toxicity of non-diazotrophic toxic cyanobacteria such as the cosmopolitan, toxin-producing genus, Microcystis.


Subject(s)
Cyanobacteria/physiology , Fresh Water , Nitrogen/metabolism , Cyanobacteria/metabolism , Fresh Water/chemistry , Fresh Water/microbiology , Microcystins/metabolism , Microcystins/toxicity , Phosphorus/metabolism
15.
Environ Sci Technol ; 50(2): 604-15, 2016 Jan 19.
Article in English | MEDLINE | ID: mdl-26654276

ABSTRACT

Although toxic cyanobacterial blooms in western Lake Erie threaten drinking water supplies and are promoted by nutrient loading, the precise nutrient regime that selects specific cyanobacteria populations is poorly understood. Here, we assess shifts in cyanobacterial abundances and global gene-expression patterns in response to natural and manipulated gradients in nitrogen and phosphorus to identify gene pathways that facilitate dominance by different cyanobacteria. Gradients in soluble reactive phosphorus shaped cyanobacterial communities and elicited the largest transcriptomic responses. Under high-P conditions (closest to the mouth of the Maumee River), Anabaena and Planktothrix were the dominant cyanobacterial populations, and experimental P and ammonium enrichment promoted nitrogen fixation gene (nifH) expression in Anabaena. For Microcystis, experimental additions of P up-regulated genes involved in phage defense, genomic rearrangement, and nitrogen acquisition but led to lower abundances. Within offshore, low-P regions of the western basin of Lake Erie, Microcystis up-regulated genes associated with P scavenging (pstSCAB, phoX) and dominated cyanobacterial communities. Experimental additions of ammonium and urea did not alter Microcystis abundances but did up-regulate protease inhibitors (aer and mcn gene sets) and microcystin synthetase genes (mcy), with urea enrichment yielding significant increases in microcystin concentrations. Our findings suggest that management plans that reduce P loads alone may not significantly reduce the risk of cyanobacterial blooms in western Lake Erie but rather may promote a shift among cyanobacterial populations (Microcystis, Anabaena, and Planktothrix) toward a greater dominance by toxic strains of Microcystis.


Subject(s)
Bacterial Proteins/genetics , Cyanobacteria/physiology , Ecosystem , Nitrogen/metabolism , Phosphorus/metabolism , Bacterial Proteins/metabolism , Cyanobacteria/genetics , Lakes/microbiology , Ohio , Sequence Analysis, DNA , Transcriptome
16.
BMC Genomics ; 16: 1068, 2015 Dec 16.
Article in English | MEDLINE | ID: mdl-26673568

ABSTRACT

BACKGROUND: While transcriptomics have become a valuable tool for linking physiology and ecology in aquatic microbes, the temporal dynamics of global transcriptomic patterns in Microcystis have rarely been assessed. Furthermore, while many microbial studies have explored expression of nutrient transporter genes, few studies have concurrently measured nutrient assimilation rates. Here, we considered how the global transcriptomic patterns and physiology of the cyanobacterium, Microcystis aeruginosa, changed daily as cells were grown from replete to deficient nitrogen (N) conditions and then back to replete conditions. RESULTS: During N deprivation, Microcystis downregulated genes involved in photosynthesis and respiration, carbon acquisition, lipid metabolism, and amino acid biosynthesis while upregulating genes involved in N acquisition and transport. With increasing N stress, both the strength of expression and number of genes being differentially expressed increased, until N was restored at which point these patterns reversed. Uptake of (15)N-labeled nitrate, ammonium and urea reflected differential expression of genes encoding transporters for these nutrients, with Microcystis appearing to preferentially increase transcription of ammonium and urea transporters and uptake of these compounds during N deprivation. Nitrate uptake and nitrate transporter expression were correlated for one set of transporters but not another, indicating these were high and low affinity nitrate transporters, respectively. Concentrations of microcystin per cell decreased during N deprivation and increased upon N restoration. However, the transcript abundance of genes involved in the synthesis of this compound was complex, as microcystin synthetase genes involved in peptide synthesis were downregulated under N deprivation while genes involved in tailoring and transport were upregulated, suggesting modification of the microcystin molecule under N stress as well as potential alternative functions for these genes and/or this toxin. CONCLUSIONS: Collectively, this study highlights the complex choreography of gene expression, cell physiology, and toxin synthesis that dynamic N levels can elicit in this ecologically important cyanobacterium. Differing expression patterns of genes within the microcystin synthetase operon in response to changing N levels revealed the potential limitations drawing conclusions based on only one gene in this operon.


Subject(s)
Gene Expression Regulation, Bacterial , Microcystins/biosynthesis , Microcystis/genetics , Microcystis/metabolism , Nitrogen/metabolism , Transcriptome , Biological Transport , Carbon/metabolism , Cluster Analysis , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Lipid Metabolism
17.
Front Microbiol ; 5: 375, 2014.
Article in English | MEDLINE | ID: mdl-25104951

ABSTRACT

Transcriptome profiling was performed on the harmful algal bloom-forming pelagophyte Aureococcus anophagefferens strain CCMP 1850 to assess responses to common stressors for dense phytoplankton blooms: low inorganic nitrogen concentrations, low inorganic phosphorus concentrations, low light levels, and a replete control. The de novo assemblies of pooled reads from all treatments reconstructed ~54,000 transcripts using Trinity, and ~31,000 transcripts using ABySS. Comparison to the strain CCMP 1984 genome showed that the majority of the gene models were present in both de novo assemblies and that roughly 95% of contigs from both assemblies mapped to the genome, with Trinity capturing slightly more genome content. Sequence reads were mapped back to the de novo assemblies as well as the gene models and differential expression was analyzed using a Bayesian approach called Analysis of Sequence Counts (ASC). On average, 93% of significantly upregulated transcripts recovered by genome mapping were present in the significantly upregulated pool from both de novo assembly methods. Transcripts related to the transport and metabolism of nitrogen were upregulated in the low nitrogen treatment, transcripts encoding enzymes that hydrolyze organic phosphorus or relieve arsenic toxicity were upregulated in the low phosphorus treatment, and transcripts for enzymes that catabolize organic compounds, restructure lipid membranes, or are involved in sulfolipid biosynthesis were upregulated in the low light treatment. A comparison of this transcriptome to the nutrient regulated transcriptional response of CCMP 1984 identified conserved responses between these two strains. These analyses reveal the transcriptional underpinnings of physiological shifts that could contribute to the ecological success of this species in situ: organic matter processing, metal detoxification, lipid restructuring, and photosynthetic apparatus turnover.

18.
PLoS One ; 8(7): e69834, 2013.
Article in English | MEDLINE | ID: mdl-23894552

ABSTRACT

Whole transcriptome shotgun sequencing (RNA-seq) was used to assess the transcriptomic response of the toxic cyanobacterium Microcystis aeruginosa during growth with low levels of dissolved inorganic nitrogen (low N), low levels of dissolved inorganic phosphorus (low P), and in the presence of high levels of high molecular weight dissolved organic matter (HMWDOM). Under low N, one third of the genome was differentially expressed, with significant increases in transcripts observed among genes within the nir operon, urea transport genes (urtBCDE), and amino acid transporters while significant decreases in transcripts were observed in genes related to photosynthesis. There was also a significant decrease in the transcription of the microcystin synthetase gene set under low N and a significant decrease in microcystin content per Microcystis cell demonstrating that N supply influences cellular toxicity. Under low P, 27% of the genome was differentially expressed. The Pho regulon was induced leading to large increases in transcript levels of the alkaline phosphatase phoX, the Pst transport system (pstABC), and the sphX gene, and transcripts of multiple sulfate transporter were also significantly more abundant. While the transcriptional response to growth on HMWDOM was smaller (5-22% of genes differentially expressed), transcripts of multiple genes specifically associated with the transport and degradation of organic compounds were significantly more abundant within HMWDOM treatments and thus may be recruited by Microcystis to utilize these substrates. Collectively, these findings provide a comprehensive understanding of the nutritional physiology of this toxic, bloom-forming cyanobacterium and the role of N in controlling microcystin synthesis.


Subject(s)
Microcystis/genetics , Nitrogen/metabolism , Phosphorus/metabolism , Transcriptome , Culture Media , Gene Expression Regulation, Bacterial , Genes, Bacterial , Microcystis/growth & development , Microcystis/metabolism , Photosynthesis/genetics , RNA, Bacterial/genetics , Sequence Analysis, RNA , Stress, Physiological
19.
J Phycol ; 49(6): 1084-94, 2013 Dec.
Article in English | MEDLINE | ID: mdl-27007629

ABSTRACT

We report on morphological observations, phylogenetic analyses, bloom dynamics, and ichthyotoxicity of the common but poorly characterized dinoflagellate Pheopolykrikos hartmannii (Zimmermann) Matsuoka et Fukuyo. From 2008 to 2010 in the Forge River Estuary, NY, USA, P. hartmannii bloomed during summer and early fall, achieving densities exceeding 8,000 cells · mL(-1) and often dominating microphytoplankton communities. Large subunit (LSU) and small subunit (SSU) rDNA sequences demonstrated that NY isolates of P. hartmannii sequences were 99%-100% identical to P. hartmannii isolates from eastern US and Korea. In both the LSU and SSU rDNA phylogenies, the clades containing P. hartmannii sequences were distinct sister clades to those composed of Polykrikos schwartzii and P. kofoidii. In the LSU rDNA phylogeny, however, the clade composed of P. hartmannii and a sequence of the photosynthetic Polykrikos lebourae was well separated from the clade composed of 10 entries of Polykrikos schwartzii and P. kofoidii. In addition, a gap of ~180 bases was observed when the LSU rDNA sequences of P. hartmannii were aligned with P. schwartzii and P. kofoidii but was not observed in the alignment between P. hartmannii and P. lebourae. Using scanning electron microscopy, several morphological features previously not reported for P. hartmannii were observed: a ventral groove located in the sulcus, a deep arc-like apical concavity within the area of apical groove, scale-like vesicles, and a shallow, completely enclosed, loop-like apical groove. Resting cysts with arrow-like surface spines were produced heterothallically by crossing clonal isolates and germinated single gymnoid cells. Finally, filtered and unfiltered bloom water from the Forge River and clonal cultures of P. hartmannii exhibited acute ichthyotoxicity to juvenile sheepshead minnows (Cyprinodon variegates) and aeration did not mitigate this effect, suggesting P. hartmannii is an ichthyotoxic, harmful alga.

20.
Microb Ecol ; 63(1): 188-98, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21720829

ABSTRACT

Cyanobacteria blooms caused by species such as Microcystis have become commonplace in many freshwater ecosystems. Although phosphorus (P) typically limits the growth of freshwater phytoplankton populations, little is known regarding the molecular response of Microcystis to variation in P concentrations and sources. For this study, we examined genes involved in P acquisition in Microcystis including two high-affinity phosphate-binding proteins (pstS and sphX) and a putative alkaline phosphatase (phoX). Sequence analyses among ten clones of Microcystis aeruginosa and one clone of Microcystis wesenbergii indicates that these genes are present and conserved within the species, but perhaps not the genus, as phoX was not identified in M. wesenbergii. Experiments with clones of M. aeruginosa indicated that expression of these three genes was strongly upregulated (50- to 400-fold) under low inorganic P conditions and that the expression of phoX was correlated with alkaline phosphatase activity (p < 0.005). In contrast, cultures grown exclusively on high levels of organic phosphorus sources (adenosine 5'-monophosphate, ß-glycerol phosphate, and D: -glucose-6-phosphate) or under nitrogen-limited conditions displayed neither high levels of gene expression nor alkaline phosphatase activity. Since Microcystis dominates phytoplankton assemblages in summer when levels of inorganic P (P(i)) are often low and/or dominate lakes with low P(i) and high organic P, our findings suggest this cyanobacterium may rely on pstS, sphX, and phoX to efficiently transport P(i) and exploit organic sources of P to form blooms.


Subject(s)
Microcystis/genetics , Microcystis/metabolism , Phosphate-Binding Proteins/genetics , Phosphorus/metabolism , Alkaline Phosphatase/biosynthesis , Alkaline Phosphatase/metabolism , Bacterial Proteins/genetics , Base Sequence , Biological Transport, Active/genetics , Genes, Bacterial , Microcystis/growth & development , Phytoplankton/growth & development , Sequence Alignment , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...