Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Adv Sci (Weinh) ; : e2401415, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965824

ABSTRACT

Galactic cosmic radiation (GCR) is one of the most serious risks posed to astronauts during missions to the Moon and Mars. Experimental models capable of recapitulating human physiology are critical to understanding the effects of radiation on human organs and developing radioprotective measures against space travel exposures. The effects of systemic radiation are studied using a multi-organ-on-a-chip (multi-OoC) platform containing engineered tissue models of human bone marrow (site of hematopoiesis and acute radiation damage), cardiac muscle (site of chronic radiation damage) and liver (site of metabolism), linked by vascular circulation with an endothelial barrier separating individual tissue chambers from the vascular perfusate. Following protracted neutron radiation, the most damaging radiation component in deep space, a greater deviation of tissue function is observed as compared to the same cumulative dose delivered acutely. Further, by characterizing engineered bone marrow (eBM)-derived immune cells in circulation, 58 unique genes specific to the effects of protracted neutron dosing are identified, as compared to acutely irradiated and healthy tissues. It propose that this bioengineered platform allows studies of human responses to extended radiation exposure in an "astronaut-on-a-chip" model that can inform measures for mitigating cosmic radiation injury.

2.
Biomed Opt Express ; 15(4): 2561-2577, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38633084

ABSTRACT

To improve particle radiotherapy, we need a better understanding of the biology of radiation effects, particularly in heavy ion radiation therapy, where global responses are observed despite energy deposition in only a subset of cells. Here, we integrated a high-speed swept confocally-aligned planar excitation (SCAPE) microscope into a focused ion beam irradiation platform to allow real-time 3D structural and functional imaging of living biological samples during and after irradiation. We demonstrate dynamic imaging of the acute effects of irradiation on 3D cultures of U87 human glioblastoma cells, revealing characteristic changes in cellular movement and intracellular calcium signaling following ionizing irradiation.

3.
Biomaterials ; 301: 122267, 2023 10.
Article in English | MEDLINE | ID: mdl-37633022

ABSTRACT

Cosmic radiation is the most serious risk that will be encountered during the planned missions to the Moon and Mars. There is a compelling need to understand the effects, safety thresholds, and mechanisms of radiation damage in human tissues, in order to develop measures for radiation protection during extended space travel. As animal models fail to recapitulate the molecular changes in astronauts, engineered human tissues and "organs-on-chips" are valuable tools for studying effects of radiation in vitro. We have developed a bioengineered tissue platform for studying radiation damage in individualized settings. To demonstrate its utility, we determined the effects of radiation using engineered models of two human tissues known to be radiosensitive: engineered cardiac tissues (eCT, a target of chronic radiation damage) and engineered bone marrow (eBM, a target of acute radiation damage). We report the effects of high-dose neutrons, a proxy for simulated galactic cosmic rays, on the expression of key genes implicated in tissue responses to ionizing radiation, phenotypic and functional changes in both tissues, and proof-of-principle application of radioprotective agents. We further determined the extent of inflammatory, oxidative stress, and matrix remodeling gene expression changes, and found that these changes were associated with an early hypertrophic phenotype in eCT and myeloid skewing in eBM. We propose that individualized models of human tissues have potential to provide insights into the effects and mechanisms of radiation during deep-space missions and allow testing of radioprotective measures.


Subject(s)
Cosmic Radiation , Humans , Biomedical Engineering , Cosmic Radiation/adverse effects , Hypertrophy
4.
Sci Rep ; 13(1): 10936, 2023 07 06.
Article in English | MEDLINE | ID: mdl-37414809

ABSTRACT

There is a persistent risk of a large-scale malicious or accidental exposure to ionizing radiation that may affect a large number of people. Exposure will consist of both a photon and neutron component, which will vary in magnitude between individuals and is likely to have profound impacts on radiation-induced diseases. To mitigate these potential disasters, there exists a need for novel biodosimetry approaches that can estimate the radiation dose absorbed by each person based on biofluid samples, and predict delayed effects. Integration of several radiation-responsive biomarker types (transcripts, metabolites, blood cell counts) by machine learning (ML) can improve biodosimetry. Here we integrated data from mice exposed to various neutron + photon mixtures, total 3 Gy dose, using multiple ML algorithms to select the strongest biomarker combinations and reconstruct radiation exposure magnitude and composition. We obtained promising results, such as receiver operating characteristic curve area of 0.904 (95% CI: 0.821, 0.969) for classifying samples exposed to ≥ 10% neutrons vs. < 10% neutrons, and R2 of 0.964 for reconstructing photon-equivalent dose (weighted by neutron relative biological effectiveness) for neutron + photon mixtures. These findings demonstrate the potential of combining various -omic biomarkers for novel biodosimetry.


Subject(s)
Radiation Exposure , Radiation Injuries , Animals , Mice , Neutrons , Relative Biological Effectiveness , Photons
5.
Sci Rep ; 12(1): 22149, 2022 12 22.
Article in English | MEDLINE | ID: mdl-36550150

ABSTRACT

The Radiological Research Accelerator Facility has modified a decommissioned Varian Clinac to deliver ultra-high dose rates: operating in 9 MeV electron mode (FLASH mode), samples can be irradiated at a Source-Surface Distance (SSD) of 20 cm at average dose rates of up to 600 Gy/s (3.3 Gy per 0.13 µs pulse, 180 pulses per second). In this mode multiple pulses are required for most irradiations. By modulating pulse repetition rate and irradiating at SSD = 171 cm, dose rates below 1 Gy/min can be achieved, allowing comparison of FLASH and conventional irradiations with the same beam. Operating in 6 MV photon mode, with the conversion target removed (SuperFLASH mode), samples are irradiated at higher dose rates (0.2-150 Gy per 5 µs pulse, 360 pulses per second) and most irradiations can be performed with a single very high dose rate pulse. In both modes we have seen the expected inverse relation between dose rate and irradiated area, with the highest dose rates obtained for beams with a FWHM of about 2 cm and ± 10% uniformity over 1 cm diameter. As an example of operation of the ultra-high dose rate FLASH irradiator, we present dose rate dependence of dicentric chromosome yields.


Subject(s)
Particle Accelerators , Photons , Electrons , Radiotherapy Dosage , Radiometry
6.
Radiat Res ; 197(6): 569-582, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35290449

ABSTRACT

Radiation therapy (RT) plays an important role in cancer treatment. The clinical efficacy of radiation therapy is, however, limited by normal tissue toxicity in areas surrounding the irradiated tumor. Compared to conventional radiation therapy (CONV-RT) in which doses are typically delivered at dose rates between 0.03-0.05 Gy/s, there is evidence that radiation delivered at dose rates of orders of magnitude higher (known as FLASH-RT), dramatically reduces the adverse side effects in normal tissues while achieving similar tumor control. The present study focused on normal cell response and tested the hypothesis that proton-FLASH irradiation preserves mitochondria function of normal cells through the induction of phosphorylated Drp1. Normal human lung fibroblasts (IMR90) were irradiated under ambient oxygen concentration (21%) with protons (LET = 10 keV/µm) delivered at dose rates of either 0.33 Gy/s or 100 Gy/s. Mitochondrial dynamics, functions, cell growth and changes in protein expression levels were investigated. Compared to lower dose-rate proton irradiation, FLASH-RT prevented mitochondria damage characterized by morphological changes, functional changes (membrane potential, mtDNA copy number and oxidative enzyme levels) and oxyradical production. After CONV-RT, the phosphorylated form of Dynamin-1-like protein (p-Drp1) underwent dephosphorylation and aggregated into the mitochondria resulting in mitochondria fission and subsequent cell death. In contrast, p-Drp1 protein level did not significantly change after delivery of similar FLASH doses. Compared with CONV irradiation, FLASH irradiation using protons induces minimal mitochondria damage; our results highlight a possible contribution of Drp1-mediated mitochondrial homeostasis in this potential novel cancer treatment modality.


Subject(s)
Neoplasms , Proton Therapy , Cell Proliferation , Fibroblasts , Humans , Proton Therapy/methods , Protons
7.
Cytogenet Genome Res ; 161(6-7): 352-361, 2021.
Article in English | MEDLINE | ID: mdl-34488220

ABSTRACT

Detonation of an improvised nuclear device highlights the need to understand the risk of mixed radiation exposure as prompt radiation exposure could produce significant neutron and gamma exposures. Although the neutron component may be a relatively small percentage of the total absorbed dose, the large relative biological effectiveness (RBE) can induce larger biological DNA damage and cell killing. The objective of this study was to use a hematopoietically humanized mouse model to measure chromosomal DNA damage in human lymphocytes 24 h after in vivo exposure to neutrons (0.3 Gy) and X rays (1 Gy). The human dicentric and cytokinesis-block micronucleus assays were performed to measure chromosomal aberrations in human lymphocytes in vivo from the blood and spleen, respectively. The mBAND assay based on fluorescent in situ hybridization labeling was used to detect neutron-induced chromosome 1 inversions in the blood lymphocytes of the neutron-irradiated mice. Cytogenetics endpoints, dicentrics and micronuclei showed that there was no significant difference in yields between the 2 irradiation types at the doses tested, indicating that neutron-induced chromosomal DNA damage in vivo was more biologically effective (RBE ∼3.3) compared to X rays. The mBAND assay, which is considered a specific biomarker of high-LET neutron exposure, confirmed the presence of clustered DNA damage in the neutron-irradiated mice but not in the X-irradiated mice, 24 h after exposure.


Subject(s)
Cytogenetics/methods , Lymphocytes/radiation effects , Neutrons , X-Rays , Adult , Animals , Cells, Cultured , Chromosome Inversion/radiation effects , Dose-Response Relationship, Radiation , Female , Humans , In Situ Hybridization, Fluorescence/methods , Lymphocytes/cytology , Lymphocytes/metabolism , Male , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Micronucleus Tests/methods , Middle Aged
8.
Radiat Res ; 196(5): 468-477, 2021 11 01.
Article in English | MEDLINE | ID: mdl-33857313

ABSTRACT

Mass casualty exposure scenarios from an improvised nuclear device are expected to be far more complex than simple photons. Based on the proximity to the explosion and potential shielding, a mixed field of neutrons and photons comprised of up to approximately 30% neutrons of the total dose is anticipated. This presents significant challenges for biodosimetry and for short-term and long-term medical treatment of exposed populations. In this study we employed untargeted metabolomic methods to develop a biosignature in urine and serum from C57BL/6 mice to address radiation quality issues. The signature was developed in males and applied to samples from female mice to identify potential sex differences. Thirteen urinary (primarily amino acids, vitamin products, nucleotides) and 18 serum biomarkers (primarily mitochondrial and fatty acid ß oxidation intermediates) were selected and evaluated in samples from day 1 and day 7 postirradiation. Sham-irradiated groups (controls) were compared to an equitoxic dose (3 Gy X-ray equivalent) from X rays (1.2 Gy/min), neutrons (∼1 Gy/h), or neutrons-photons. Results showed a time-dependent increase in the efficiency of the signatures, with serum providing the highest levels of accuracy in distinguishing not only between exposed from non-exposed populations, but also between radiation quality (photon exposures vs. exposures with a neutron component) and in between neutron-photon exposures (5, 15 or 25% of neutrons in the total dose) for evaluating the neutron contribution. A group of metabolites known as acylcarnitines was only responsive in males, indicating the potential for different mechanisms of action in baseline levels and of neutron-photon responses between the two sexes. Our findings highlight the potential of metabolomics in developing biodosimetric methods to evaluate mixed exposures with high sensitivity and specificity.


Subject(s)
Neutrons , Photons , Animals , Male , Mice , Radiation Dosage , Radiation Exposure
9.
PLoS One ; 15(4): e0228350, 2020.
Article in English | MEDLINE | ID: mdl-32320391

ABSTRACT

Dosimetry is an important tool for triage and treatment planning following any radiation exposure accident, and biological dosimetry, which estimates exposure dose using a biological parameter, is a practical means of determining the specific dose an individual receives. The cytokinesis-blocked micronucleus assay (CBMN) is an established biodosimetric tool to measure chromosomal damage in mitogen-stimulated human lymphocytes. The CBMN method is especially valuable for biodosimetry in triage situations thanks to simplicity in scoring and adaptability to high-throughput automated sample processing systems. While this technique produces dose-response data which fit very well to a linear-quadratic model for exposures to low linear energy transfer (LET) radiation and for doses up for 5 Gy, limitations to the accuracy of this method arise at larger doses. Accuracy at higher doses is limited by the number of cells reaching mitosis. Whereas it would be expected that the yield of micronuclei increases with the dose, in many experiments it has been shown to actually decrease when normalized over the total number of cells. This variation from a monotonically increasing dose response poses a limitation for retrospective dose reconstruction. In this study we modified the standard CBMN assay to increase its accuracy following exposures to higher doses of photons or a mixed neutron-photon beam. The assay is modified either through inhibitions of the G2/M and spindle checkpoints with the addition of caffeine and/or ZM447439 (an Aurora kinase inhibitor), respectively to the blood cultures at select times during the assay. Our results showed that caffeine addition improved assay performance for photon up to 10 Gy. This was achieved by extending the assay time from the typical 70 h to just 74 h. Compared to micronuclei yields without inhibitors, addition of caffeine and ZM447439 resulted in improved accuracy in the detection of micronuclei yields up to 10 Gy from photons and 4 Gy of mixed neutrons-photons. When the dose-effect curves were fitted to take into account the turnover phenomenon observed at higher doses, best fitting was achieved when the combination of both inhibitors was used. These techniques permit reliable dose reconstruction after high doses of radiation with a method that can be adapted to high-throughput automated sample processing systems.


Subject(s)
Cytogenetics , Radiation Dosage , Radiometry , Adult , Benzamides/pharmacology , Caffeine/pharmacology , Cells, Cultured , Dose-Response Relationship, Radiation , Female , Humans , Lymphocytes/drug effects , Lymphocytes/radiation effects , Male , Micronucleus Tests , Middle Aged , Neutrons , Protons , Quinazolines/pharmacology
10.
Sci Rep ; 10(1): 2899, 2020 02 19.
Article in English | MEDLINE | ID: mdl-32076014

ABSTRACT

Biodosimetry-based individualized reconstruction of complex irradiation scenarios (partial-body shielding and/or neutron + photon mixtures) can improve treatment decisions after mass-casualty radiation-related incidents. We used a high-throughput micronucleus assay with automated scanning and imaging software on ex-vivo irradiated human lymphocytes to: a) reconstruct partial-body and/or neutron exposure, and b) estimate separately the photon and neutron doses in a mixed exposure. The mechanistic background is that, compared with total-body photon irradiations, neutrons produce more heavily-damaged lymphocytes with multiple micronuclei/binucleated cell, whereas partial-body exposures produce fewer such lymphocytes. To utilize these differences for biodosimetry, we developed metrics that describe micronuclei distributions in binucleated cells and serve as predictors in machine learning or parametric analyses of the following scenarios: (A) Homogeneous gamma-irradiation, mimicking total-body exposures, vs. mixtures of irradiated blood with unirradiated blood, mimicking partial-body exposures. (B) X rays vs. various neutron + photon mixtures. The results showed high accuracies of scenario and dose reconstructions. Specifically, receiver operating characteristic curve areas (AUC) for sample classification by exposure type reached 0.931 and 0.916 in scenarios A and B, respectively. R2 for actual vs. reconstructed doses in these scenarios reached 0.87 and 0.77, respectively. These encouraging findings demonstrate a proof-of-principle for the proposed approach of high-throughput reconstruction of clinically-relevant complex radiation exposure scenarios.


Subject(s)
Neutrons , Radiation Exposure , Adult , Algorithms , Female , Humans , Machine Learning , Male , Micronucleus Tests , Middle Aged , Photons , Young Adult
11.
ACS Chem Biol ; 15(2): 469-484, 2020 02 21.
Article in English | MEDLINE | ID: mdl-31899616

ABSTRACT

Although radiation is widely used to treat cancers, resistance mechanisms often develop and involve activation of DNA repair and inhibition of apoptosis. Therefore, compounds that sensitize cancer cells to radiation via alternative cell death pathways are valuable. We report here that ferroptosis, a form of nonapoptotic cell death driven by lipid peroxidation, is partly responsible for radiation-induced cancer cell death. Moreover, we found that small molecules activating ferroptosis through system xc- inhibition or GPX4 inhibition synergize with radiation to induce ferroptosis in several cancer types by enhancing cytoplasmic lipid peroxidation but not increasing DNA damage or caspase activation. Ferroptosis inducers synergized with cytoplasmic irradiation, but not nuclear irradiation. Finally, administration of ferroptosis inducers enhanced the antitumor effect of radiation in a murine xenograft model and in human patient-derived models of lung adenocarcinoma and glioma. These results suggest that ferroptosis inducers may be effective radiosensitizers that can expand the efficacy and range of indications for radiation therapy.


Subject(s)
Antineoplastic Agents/therapeutic use , Ferroptosis/drug effects , Lipid Peroxidation/radiation effects , Neoplasms/drug therapy , Neoplasms/radiotherapy , Radiation-Sensitizing Agents/therapeutic use , Amino Acid Transport System y+/metabolism , Animals , Carbolines/therapeutic use , Cell Line, Tumor , Gamma Rays , Humans , Imidazoles/therapeutic use , Ketones/therapeutic use , Lipid Peroxidation/drug effects , Mice, Nude , Piperazines/therapeutic use , Sorafenib/therapeutic use , Xenograft Model Antitumor Assays
12.
Radiat Res ; 192(2): 189-199, 2019 08.
Article in English | MEDLINE | ID: mdl-31237816

ABSTRACT

In the possible event of a detonation of an improvised nuclear device (IND), the immediate radiation would consist of both photons (gamma rays) and neutrons. Since neutrons generally have a high relative biological effectiveness (RBE) for most physiological end points, it is important to understand the effect that neutrons would have on the biodosimetry methods that are being developed for medical triage purposes. We previously compared the transcriptomic response in human blood after neutron and photon irradiation. In this study, we analyzed the effect of mixed-field-neutron-photon radiation on gene expression responses in human peripheral blood, to elucidate the neutron contribution in the setting of a radiation exposure from an IND detonation. We used four combinations of mixed neutron-photon exposures, with increasing percentages of neutrons, to a cumulative dose of 3 Gy. The mixed-field exposures consisted of 0%, 5%, 15% and 25% of neutrons, where 0% corresponds to 3 Gy of pure X rays. A maximum neutron exposure, corresponding to 83% neutrons (0.75 Gy) was also used in the study. Increases were observed in both the number and expression level of genes, with increasing percentages of neutrons from 0% to 25% in the mixed-field exposures. Gene ontology analysis showed an overall predominance of TP53 signaling among upregulated genes across all exposures. Some TP53 regulated genes, such as EDA2R, GDF15 and VWCE, demonstrated increased expression with increasing neutron percentages in mixed-field exposures. Immune response, specifically natural-killer-cell mediated signaling, was the most significant biological process associated with downregulated genes. We observed significant suppression of T-cell-mediated signaling in mixed-field exposures, which was absent in the response to pure photons. In this first study investigating gene expression in human blood cells exposed to mixed neutron-photon fields similar to an actual IND explosion, we have identified a number of genes responding to the 3 Gy dose that showed increasing expression as the neutron percentage increased. Such genes may serve as better indicators of the expected biological damage than a report of total physical dose, and thus provide more relevant information for treating physicians.


Subject(s)
Neutrons/adverse effects , Photons/adverse effects , Radiation Exposure/adverse effects , Transcriptome/radiation effects , Blood/metabolism , Blood/radiation effects , Gene Ontology , Healthy Volunteers , Humans , Relative Biological Effectiveness
13.
Sci Rep ; 9(1): 4539, 2019 03 14.
Article in English | MEDLINE | ID: mdl-30872747

ABSTRACT

Heightened threats for nuclear terrorism using improvised nuclear devices (IND) necessitate the development of biodosimetry assays that could rapidly assess thousands of individuals. However, the radiation exposures from an IND may be complex due to mixed fields of neutrons and photons (γ-rays), shielding from buildings, and proximity to the epicenter among others. In this study we utilized lipidomics to analyze serum samples from mice exposed to various percentages of neutrons and X-rays to a total dose of 3 Gy. Triacylglycerides, phosphatidylserines, lysophosphatidylethanolamines, lysophosphatidylcholines (LPCs), sphingolipids, and cholesteryl esters all showed delayed increases at day 7 compared to day 1 after irradiation, while diacylglycerides decreased in mixed field exposures and phosphatidylcholines (PCs) remained largely unchanged. Individual lipid molecules with a high degree of unsaturation exhibited the highest fold changes in mixed fields compared to photons alone. More importantly, the increased ratio of LPCs to PCs of each irradiation group compared to control could be used as a radiation biomarker and highlights the existence of a pro-inflammatory phenotype. The results showed that even a small percentage of neutrons in a mixed field can lead to high biological responses with implications for accurate biodosimetry, triage and medical managements of exposed populations.


Subject(s)
Hyperlipidemias/diagnosis , Inflammation/diagnosis , Lipidomics/methods , Lipids/blood , Radiation Exposure/adverse effects , Animals , Hyperlipidemias/blood , Hyperlipidemias/etiology , Inflammation/blood , Inflammation/etiology , Male , Mice , Mice, Inbred C57BL , Neutrons , Phenotype , Radiation Dosage , X-Rays
14.
BMC Genomics ; 19(1): 504, 2018 Jun 28.
Article in English | MEDLINE | ID: mdl-29954325

ABSTRACT

BACKGROUND: Radiation exposure due to the detonation of an improvised nuclear device remains a major security concern. Radiation from such a device involves a combination of photons and neutrons. Although photons will make the greater contribution to the total dose, neutrons will certainly have an impact on the severity of the exposure as they have high relative biological effectiveness. RESULTS: We investigated the gene expression signatures in the blood of mice exposed to 3 Gy x-rays, 0.75 Gy of neutrons, or to mixed field photon/neutron with the neutron fraction contributing 5, 15%, or 25% of a total 3 Gy radiation dose. Gene ontology and pathway analysis revealed that genes involved in protein ubiquitination pathways were significantly overrepresented in all radiation doses and qualities. On the other hand, eukaryotic initiation factor 2 (EIF2) signaling pathway was identified as one of the top 10 ranked canonical pathways in neutron, but not pure x-ray, exposures. In addition, the related mTOR and regulation of EIF4/p70S6K pathways were also significantly underrepresented in the exposures with a neutron component, but not in x-ray radiation. The majority of the changed genes in these pathways belonged to the ribosome biogenesis and translation machinery and included several translation initiation factors (e.g. Eif2ak4, Eif3f), as well as 40S and 60S ribosomal subunits (e.g. Rsp19, Rpl19, Rpl27). Many of the differentially downregulated ribosomal genes (e.g. RPS19, RPS28) have been causally associated with human bone marrow failure syndromes and hematologic malignancies. We also observed downregulation of transfer RNA processes, in the neutron-only exposure (p < 0.005). Ingenuity Pathway Analysis (p < 0.05) of differentially expressed genes predicted significantly suppressed activity of the upstream regulators c-Myc and Mycn, transcription factors known to control ribosome biogenesis. CONCLUSIONS: We describe the gene expression profile of mouse blood following exposure to mixed field neutron/photon irradiation. We have discovered that pathways related to protein translation are significantly underrepresented in the exposures containing a neutron component. Our results highlight the significance of neutron exposures that even the smallest percentage can have profound biological effects that will affect medical management and treatment decisions in case of a radiological emergency.


Subject(s)
Neutrons , Transcriptome/radiation effects , Animals , Gene Expression Regulation/radiation effects , Gene Ontology , Male , Metabolic Networks and Pathways/radiation effects , Mice , Mice, Inbred C57BL , Oligonucleotide Array Sequence Analysis , Photons , Radiation Dosage , Signal Transduction/radiation effects , X-Rays
15.
Radiat Res ; 188(1): 21-34, 2017 07.
Article in English | MEDLINE | ID: mdl-28475424

ABSTRACT

The increased threat of terrorism across the globe has raised fears that certain groups will acquire and use radioactive materials to inflict maximum damage. In the event that an improvised nuclear device (IND) is detonated, a potentially large population of victims will require assessment for radiation exposure. While photons will contribute to a major portion of the dose, neutrons may be responsible for the severity of the biologic effects and cellular responses. We investigated differences in response between these two radiation types by using metabolomics and lipidomics to identify biomarkers in urine and blood of wild-type C57BL/6 male mice. Identification of metabolites was based on a 1 Gy dose of radiation. Compared to X rays, a neutron spectrum similar to that encountered in Hiroshima at 1-1.5 km from the epicenter induced a severe metabolic dysregulation, with perturbations in amino acid metabolism and fatty acid ß-oxidation being the predominant ones. Urinary metabolites were able to discriminate between neutron and X rays on day 1 as well as day 7 postirradiation, while serum markers showed such discrimination only on day 1. Free fatty acids from omega-6 and omega-3 pathways were also decreased with 1 Gy of neutrons, implicating cell membrane dysfunction and impaired phospholipid metabolism, which should otherwise lead to release of those molecules in circulation. While a precise relative biological effectiveness value could not be calculated from this study, the results are consistent with other published studies showing higher levels of damage from neutrons, demonstrated here by increased metabolic dysregulation. Metabolomics can therefore aid in identifying global perturbations in blood and urine, and effectively distinguishing between neutron and photon exposures.


Subject(s)
Metabolic Diseases/etiology , Metabolic Diseases/metabolism , Metabolome/radiation effects , Neutrons/adverse effects , Nuclear Warfare , Radiation Injuries/metabolism , Terrorism , Animals , Biological Assay/methods , Male , Mice , Mice, Inbred C57BL , Photons/adverse effects , Radiation Dosage , Radiation Exposure/adverse effects , Radiation Exposure/analysis , Radiation Injuries/etiology , Radiometry/methods
16.
Radiat Res ; 187(4): 433-440, 2017 04.
Article in English | MEDLINE | ID: mdl-28140791

ABSTRACT

The detonation of an improvised nuclear device would produce prompt radiation consisting of both photons (gamma rays) and neutrons. While much effort in recent years has gone into the development of radiation biodosimetry methods suitable for mass triage, the possible effect of neutrons on the endpoints studied has remained largely uninvestigated. We have used a novel neutron irradiator with an energy spectrum based on that 1-1.5 km from the epicenter of the Hiroshima blast to begin examining the effect of neutrons on global gene expression, and the impact this may have on the development of gene expression signatures for radiation biodosimetry. We have exposed peripheral blood from healthy human donors to 0.1, 0.3, 0.5 or 1 Gy of neutrons ex vivo using our neutron irradiator, and compared the transcriptomic response 24 h later to that resulting from sham exposure or exposure to 0.1, 0.3, 0.5, 1, 2 or 4 Gy of photons (X rays). We identified 125 genes that responded significantly to both radiation qualities as a function of dose, with the magnitude of response to neutrons generally being greater than that seen after X-ray exposure. Gene ontology analysis suggested broad involvement of the p53 signaling pathway and general DNA damage response functions across all doses of both radiation qualities. Regulation of immune response and chromatin-related functions were implicated only following the highest doses of neutrons, suggesting a physiological impact of greater DNA damage. We also identified several genes that seem to respond primarily as a function of dose, with less effect of radiation quality. We confirmed this pattern of response by quantitative real-time RT-PCR for BAX, TNFRSF10B, ITLN2 and AEN and suggest that gene expression may provide a means to differentiate between total dose and a neutron component.


Subject(s)
Blood Physiological Phenomena/genetics , Blood Physiological Phenomena/radiation effects , Blood/radiation effects , Transcriptome/radiation effects , Female , Gene Expression Regulation/radiation effects , Gene Ontology , Humans , Male , Neutrons , Oligonucleotide Array Sequence Analysis , X-Rays
17.
BMC Genomics ; 18(1): 2, 2017 01 03.
Article in English | MEDLINE | ID: mdl-28049433

ABSTRACT

BACKGROUND: In the event of an improvised nuclear device detonation, the prompt radiation exposure would consist of photons plus a neutron component that would contribute to the total dose. As neutrons cause more complex and difficult to repair damage to cells that would result in a more severe health burden to affected individuals, it is paramount to be able to estimate the contribution of neutrons to an estimated dose, to provide information for those making treatment decisions. RESULTS: Mice exposed to either 0.25 or 1 Gy of neutron or 1 or 4 Gy x-ray radiation were sacrificed at 1 or 7 days after exposure. Whole genome microarray analysis identified 7285 and 5045 differentially expressed genes in the blood of mice exposed to neutron or x-ray radiation, respectively. Neutron exposure resulted in mostly downregulated genes, whereas x-rays showed both down- and up-regulated genes. A total of 34 differentially expressed genes were regulated in response to all ≥1 Gy exposures at both times. Of these, 25 genes were consistently downregulated at days 1 and 7, whereas 9 genes, including the transcription factor E2f2, showed bi-directional regulation; being downregulated at day 1, while upregulated at day 7. Gene ontology analysis revealed that genes involved in nucleic acid metabolism processes were persistently downregulated in neutron irradiated mice, whereas genes involved in lipid metabolism were upregulated in x-ray irradiated animals. Most biological processes significantly enriched at both timepoints were consistently represented by either under- or over-expressed genes. In contrast, cell cycle processes were significant among down-regulated genes at day 1, but among up-regulated genes at day 7 after exposure to either neutron or x-rays. Cell cycle genes downregulated at day 1 were mostly distinct from the cell cycle genes upregulated at day 7. However, five cell cycle genes, Fzr1, Ube2c, Ccna2, Nusap1, and Cdc25b, were both downregulated at day 1 and upregulated at day 7. CONCLUSIONS: We describe, for the first time, the gene expression profile of mouse blood cells following exposure to neutrons. We have found that neutron radiation results in both distinct and common gene expression patterns compared with x-ray radiation.


Subject(s)
Gene Expression Regulation/radiation effects , Neutrons , Transcriptome , X-Rays , Animals , Blood Cells/metabolism , Blood Cells/radiation effects , Cluster Analysis , Computational Biology/methods , Gene Expression Profiling , Gene Ontology , Mice , Molecular Sequence Annotation , Radiation Dosage , Reproducibility of Results
18.
Nucl Instrum Methods Phys Res A ; 794: 234-239, 2015 Sep 11.
Article in English | MEDLINE | ID: mdl-26273118

ABSTRACT

A novel neutron irradiation facility at the Radiological Research Accelerator Facility (RARAF) has been developed to mimic the neutron radiation from an Improvised Nuclear Device (IND) at relevant distances (e.g. 1.5 km) from the epicenter. The neutron spectrum of this IND-like neutron irradiator was designed according to estimations of the Hiroshima neutron spectrum at 1.5 km. It is significantly different from a standard reactor fission spectrum, because the spectrum changes as the neutrons are transported through air, and it is dominated by neutron energies from 100 keV up to 9 MeV. To verify such wide energy range neutron spectrum, detailed here is the development of a combined spectroscopy system. Both a liquid scintillator detector and a gas proportional counter were used for the recoil spectra measurements, with the individual response functions estimated from a series of Monte Carlo simulations. These normalized individual response functions were formed into a single response matrix for the unfolding process. Several accelerator-based quasi-monoenergetic neutron source spectra were measured and unfolded to test this spectroscopy system. These reference neutrons were produced from two reactions: T(p,n)3He and D(d,n)3He, generating neutron energies in the range between 0.2 and 8 MeV. The unfolded quasi-monoenergetic neutron spectra indicated that the detection system can provide good neutron spectroscopy results in this energy range. A broad-energy neutron spectrum from the 9Be(d,n) reaction using a 5 MeV deuteron beam, measured at 60 degrees to the incident beam was measured and unfolded with the evaluated response matrix. The unfolded broad neutron spectrum is comparable with published time-of-flight results. Finally, the pair of detectors were used to measure the neutron spectrum generated at the RARAF IND-like neutron facility and a comparison is made to the neutron spectrum of Hiroshima.

19.
J Instrum ; 72012 Dec.
Article in English | MEDLINE | ID: mdl-24058378

ABSTRACT

We fabricated ultrathin metal-semiconductor Schottky diodes for use as transmission particle detectors in the biological microbeam at Columbia University's Radiological Research Accelerator Facility (RARAF). The RARAF microbeam can deliver a precise dose of ionizing radiation in cell nuclei with sub-micron precision. To ensure an accurate delivery of charged particles, the facility currently uses a commercial charged-particle detector placed after the sample. We present here a transmission detector that will be placed between the particle accelerator and the biological specimen, allowing the irradiation of samples that would otherwise block radiation from reaching a detector behind the sample. Four detectors were fabricated with co-planar gold and aluminum electrodes thermally evaporated onto etched n-type crystalline silicon substrates, with device thicknesses ranging from 8.5 µm - 13.5 µm. We show coincident detections and pulse-height distributions of charged particles in both the transmission detector and the commercial detector above it. Detections are demonstrated at a range of operating conditions, including incoming particle type, count rate, and beam location on the detectors. The 13.5 µm detector is shown to work best to detect 2.7 MeV protons (H+), and the 8.5 µm detector is shown to work best to detect 5.4 MeV alpha particles (4He++). The development of a transmission detector enables a range of new experiments to take place at RARAF on radiation-stopping samples such as thick tissues, targets that need immersion microscopy, and integrated microfluidic devices for handling larger quantities of cells and small organisms.

20.
Nucl Instrum Methods Phys Res B ; 269(18): 1992-1996, 2011 Sep 15.
Article in English | MEDLINE | ID: mdl-21811347

ABSTRACT

A soft x-ray microbeam using proton-induced x-ray emission (PIXE) of characteristic titanium (K(α) 4.5 keV) as the x-ray source has been developed at the Radiological Research Accelerator Facility (RARAF) at Columbia University. The proton beam is focused to a 120 µm × 50 µm spot on the titanium target using an electrostatic quadrupole quadruplet previously used for the charged particle microbeam studies at RARAF. The proton induced x-rays from this spot project a 50 µm round x-ray generation spot into the vertical direction. The x-rays are focused to a spot size of 5 µm in diameter using a Fresnel zone plate. The x-rays have an attenuation length of (1/e length of ~145 µm) allowing more consistent dose delivery across the depth of a single cell layer and penetration into tissue samples than previous ultra soft x-ray systems. The irradiation end station is based on our previous design to allow quick comparison to charged particle experiments and for mixed irradiation experiments.

SELECTION OF CITATIONS
SEARCH DETAIL
...