Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 10: 1094, 2019.
Article in English | MEDLINE | ID: mdl-31572414

ABSTRACT

The inhibition of hypocotyl elongation by ethylene in dark-grown seedlings was the basis of elegant screens that identified ethylene-insensitive Arabidopsis mutants, which remained tall even when treated with high concentrations of ethylene. This simple approach proved invaluable for identification and molecular characterization of major players in the ethylene signaling and response pathway, including receptors and downstream signaling proteins, as well as transcription factors that mediate the extensive transcriptional remodeling observed in response to elevated ethylene. However, the dark-adapted early developmental stage used in these experiments represents only a small segment of a plant's life cycle. After a seedling's emergence from the soil, light signaling pathways elicit a switch in developmental programming and the hormonal circuitry that controls it. Accordingly, ethylene levels and responses diverge under these different environmental conditions. In this review, we compare and contrast ethylene synthesis, perception, and response in light and dark contexts, including the molecular mechanisms linking light responses to ethylene biology. One powerful method to identify similarities and differences in these important regulatory processes is through comparison of transcriptomic datasets resulting from manipulation of ethylene levels or signaling under varying light conditions. We performed a meta-analysis of multiple transcriptomic datasets to uncover transcriptional responses to ethylene that are both light-dependent and light-independent. We identified a core set of 139 transcripts with robust and consistent responses to elevated ethylene across three root-specific datasets. This "gold standard" group of ethylene-regulated transcripts includes mRNAs encoding numerous proteins that function in ethylene signaling and synthesis, but also reveals a number of previously uncharacterized gene products that may contribute to ethylene response phenotypes. Understanding these light-dependent differences in ethylene signaling and synthesis will provide greater insight into the roles of ethylene in growth and development across the entire plant life cycle.

2.
Plant Physiol ; 176(3): 2095-2118, 2018 03.
Article in English | MEDLINE | ID: mdl-29259106

ABSTRACT

Transcriptomic analyses with high temporal resolution provide substantial new insight into hormonal response networks. This study identified the kinetics of genome-wide transcript abundance changes in response to elevated levels of the plant hormone ethylene in roots from light-grown Arabidopsis (Arabidopsis thaliana) seedlings, which were overlaid on time-matched developmental changes. Functional annotation of clusters of transcripts with similar temporal patterns revealed rapidly induced clusters with known ethylene function and more slowly regulated clusters with novel predicted functions linked to root development. In contrast to studies with dark-grown seedlings, where the canonical ethylene response transcription factor, EIN3, is central to ethylene-mediated development, the roots of ein3 and eil1 single and double mutants still respond to ethylene in light-grown seedlings. Additionally, a subset of these clusters of ethylene-responsive transcripts were enriched in targets of EIN3 and ERFs. These results are consistent with EIN3-independent developmental and transcriptional changes in light-grown roots. Examination of single and multiple gain-of-function and loss-of-function receptor mutants revealed that, of the five ethylene receptors, ETR1 controls lateral root and root hair initiation and elongation and the synthesis of other receptors. These results provide new insight into the transcriptional and developmental responses to ethylene in light-grown seedlings.


Subject(s)
Arabidopsis/genetics , Ethylenes/pharmacology , Gene Regulatory Networks , Plant Roots/genetics , Receptors, Cell Surface/metabolism , Amino Acids, Cyclic/pharmacology , Arabidopsis/drug effects , Darkness , Gene Expression Regulation, Plant/drug effects , Gene Ontology , Gene Regulatory Networks/drug effects , Genes, Plant , Kinetics , Plant Roots/drug effects , Plant Roots/growth & development , RNA, Messenger/genetics , RNA, Messenger/metabolism , Seedlings/drug effects , Seedlings/genetics , Seedlings/growth & development , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...