Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
FEBS Lett ; 594(20): 3395-3405, 2020 10.
Article in English | MEDLINE | ID: mdl-32767399

ABSTRACT

DNA topoisomerase II beta (TOP2B) has a role in transcriptional regulation. Here, to further investigate transcriptional regulation by TOP2B, we used RNA-sequencing and real-time PCR to analyse the differential gene expression profiles of wild-type and two independent TOP2B-null pre-B Nalm-6 cell lines, one generated by targeted insertion and the other using CRISPR-Cas9 gene editing. We identified carbonyl reductase 1 (CBR1) among the most significantly downregulated genes in these TOP2B-null cells. Reduced CBR1 expression was accompanied by loss of binding of the transcription factors USF2 and MAX to the CBR1 promoter. We describe possible mechanisms by which loss of TOP2B results in CBR1 downregulation. To our knowledge, this is the first report of a link between TOP2B and CBR1.


Subject(s)
Carbonyl Reductase (NADPH)/genetics , DNA Topoisomerases, Type II/metabolism , Gene Expression Regulation , Transcription, Genetic , Carbonyl Reductase (NADPH)/metabolism , Cell Line , Epigenesis, Genetic , Gene Expression Profiling , Genome, Human , Humans , Promoter Regions, Genetic
3.
Semin Cell Dev Biol ; 76: 3-14, 2018 04.
Article in English | MEDLINE | ID: mdl-28834762

ABSTRACT

The cerebral cortex is divided stereotypically into a number of functionally distinct areas. According to the protomap hypothesis formulated by Rakic neural progenitors in the ventricular zone form a mosaic of proliferative units that provide a primordial species-specific cortical map. Positional information of newborn neurons is maintained during their migration to the overlying cortical plate. Much evidence has been found to support this hypothesis from studies of primary cortical areas in mouse models in particular. Differential expansion of cortical areas and the introduction of new functional modules during evolution might be the result of changes in the progenitor cells. The human cerebral cortex shows a wide divergence from the mouse containing a much higher proportion of association cortex and a more complicated regionalised repertoire of neuron sub-types. To what extent does the protomap hypothesis hold true for the primate brain? This review summarises a growing number of studies exploring arealised gene expression in the early developing human telencephalon. The evidence so far is that the human and mouse brain do share fundamental mechanisms of areal specification, however there are subtle differences which could lead us to a better understanding of cortical evolution and the origins of neurodevelopmental diseases.


Subject(s)
Cerebral Cortex/growth & development , Neurogenesis/genetics , Telencephalon/growth & development , Cell Differentiation , Humans
4.
Cereb Cortex ; 27(10): 4971-4987, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28922831

ABSTRACT

In human telencephalon at 8-12 postconceptional weeks, ribonucleic acid quantitative sequencing and immunohistochemistry revealed cortical chicken ovalbumin upstream promotor-transcription factor 1 (COUP-TFI) expression in a high ventro-posterior to low anterior gradient except for raised immunoreactivity in the anterior ventral pallium. Unlike in mouse, COUP-TFI and SP8 were extensively co-expressed in dorsal sensory neocortex and dorsal hippocampus whereas COUPTFI/COUPTFII co-expression defined ventral temporal cortex and ventral hippocampus. In the ganglionic eminences (GEs) COUP-TFI immunoreactivity demarcated the proliferative zones of caudal GE (CGE), dorsal medial GE (MGE), MGE/lateral GE (LGE) boundary, and ventral LGE whereas COUP-TFII was limited to ventral CGE and the MGE/LGE boundary. Co-labeling with gamma amino butyric acidergic interneuron markers revealed that COUP-TFI was expressed in subpopulations of either MGE-derived (SOX6+) or CGE-derived (calretinin+/SP8+) interneurons. COUP-TFII was mainly confined to CGE-derived interneurons. Twice as many GAD67+ cortical cells co-labeled for COUP-TFI than for COUP-TFII. A fifth of COUP-TFI cells also co-expressed COUP-TFII, and cells expressing either transcription factor followed posterior or anterio-lateral pathways into the cortex, therefore, a segregation of migration pathways according to COUP-TF expression as proposed in mouse was not observed. In cultures differentiated from isolated human cortical progenitors, many cells expressed either COUP-TF and 30% also co-expressed GABA, however no cells expressed NKX2.1. This suggests interneurons could be generated intracortically from progenitors expressing either COUP-TF.


Subject(s)
COUP Transcription Factor II/metabolism , COUP Transcription Factor I/metabolism , GABAergic Neurons/metabolism , Interneurons/metabolism , Telencephalon/growth & development , Cell Differentiation/physiology , Cell Movement/physiology , Gene Expression Regulation, Developmental/physiology , Hippocampus/metabolism , Humans , Immunohistochemistry/methods , Neocortex/growth & development , Neocortex/metabolism
5.
Cereb Cortex ; 27(1): 216-232, 2017 01 01.
Article in English | MEDLINE | ID: mdl-28013231

ABSTRACT

Neurexins (NRXNs) are presynaptic terminal proteins and candidate neurodevelopmental disorder susceptibility genes; mutations presumably upset synaptic stabilization and function. However, analysis of human cortical tissue samples by RNAseq and quantitative real-time PCR at 8-12 postconceptional weeks, prior to extensive synapse formation, showed expression of all three NRXNs as well as several potential binding partners. However, the levels of expression were not identical; NRXN1 increased with age and NRXN2 levels were consistently higher than for NRXN3. Immunohistochemistry for each NRXN also revealed different expression patterns at this stage of development. NRXN1 and NRXN3 immunoreactivity was generally strongest in the cortical plate and increased in the ventricular zone with age, but was weak in the synaptogenic presubplate (pSP) and marginal zone. On the other hand, NRXN2 colocalized with synaptophysin in neurites of the pSP, but especially with GAP43 and CASK in growing axons of the intermediate zone. Alternative splicing modifies the role of NRXNs and we found evidence by RNAseq for exon skipping at splice site 4 and concomitant expression of KHDBRS proteins which control this splicing. NRXN2 may play a part in early cortical synaptogenesis, but NRXNs could have diverse roles in development including axon guidance, and intercellular communication between proliferating cells and/or migrating neurons.


Subject(s)
Cell Adhesion Molecules, Neuronal/metabolism , Cerebral Cortex/embryology , Cerebral Cortex/metabolism , Gene Expression Regulation, Developmental/physiology , Nerve Tissue Proteins/metabolism , Neurogenesis/physiology , Aging/metabolism , Calcium-Binding Proteins , Embryonic Development/physiology , Female , Humans , Infant , Male , Neural Cell Adhesion Molecules , Tissue Distribution
7.
J Anat ; 228(3): 452-63, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26612825

ABSTRACT

TOP2A and TOP2B are type II topoisomerase enzymes that have important but distinct roles in DNA replication and RNA transcription. Recently, TOP2B has been implicated in the transcription of long genes in particular that play crucial roles in neural development and are susceptible to mutations contributing to neurodevelopmental conditions such as autism and schizophrenia. This study maps their expression in the early foetal human telencephalon between 9 and 12 post-conceptional weeks. TOP2A immunoreactivity was restricted to cell nuclei of the proliferative layers of the cortex and ganglionic eminences (GE), including the ventricular zone and subventricular zone (SVZ) closely matching expression of the proliferation marker KI67. Comparison with sections immunolabelled for NKX2.1, a medial GE (MGE) marker, and PAX6, a cortical progenitor cell and lateral GE (LGE) marker, revealed that TOP2A-expressing cells were more abundant in MGE than the LGE. In the cortex, TOP2B is expressed in cell nuclei in both proliferative (SVZ) and post-mitotic compartments (intermediate zone and cortical plate) as revealed by comparison with immunostaining for PAX6 and the post-mitotic neuron marker TBR1. However, co-expression with KI67 was rare. In the GE, TOP2B was also expressed by proliferative and post-mitotic compartments. In situ hybridisation studies confirmed these patterns of expression, except that TOP2A mRNA is restricted to cells in the G2/M phase of division. Thus, during early development, TOP2A is likely to have a role in cell proliferation, whereas TOP2B is expressed in post-mitotic cells and may be important in controlling expression of long genes even at this early stage.


Subject(s)
Antigens, Neoplasm/biosynthesis , DNA Topoisomerases, Type II/biosynthesis , DNA-Binding Proteins/biosynthesis , Fetus/enzymology , Neurogenesis/physiology , Telencephalon/embryology , Telencephalon/enzymology , Humans , Immunohistochemistry , In Situ Hybridization , Poly-ADP-Ribose Binding Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...