Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 10(10): e0128708, 2015.
Article in English | MEDLINE | ID: mdl-26466350

ABSTRACT

Dopaminergic systems regulate the release of several hormones including growth hormone (GH), thyroid hormones, insulin, glucocorticoids and prolactin (PRL) that play significant roles in the regulation of various Cytochrome P450 (CYP) enzymes. The present study investigated the role of dopamine D2-receptor-linked pathways in the regulation of CYP1A1, CYP1A2 and CYP1B1 that belong to a battery of genes controlled by the Aryl Hydrocarbon Receptor (AhR) and play a crucial role in the metabolism and toxicity of numerous environmental toxicants. Inhibition of dopamine D2-receptors with sulpiride (SULP) significantly repressed the constitutive and benzo[a]pyrene (B[a]P)-induced CYP1A1, CYP1A2 and CYP1B expression in the rat liver. The expression of AhR, heat shock protein 90 (HSP90) and AhR nuclear translocator (ARNT) was suppressed by SULP in B[a]P-treated livers, whereas the AhRR expression was increased by the drug suggesting that the SULP-mediated repression of the CYP1 inducibility is due to inactivation of the AhR regulatory system. At signal transduction level, the D2-mediated down-regulation of constitutive CYP1A1/2 and CYP1B1 expression appears to be mediated by activation of the insulin/PI3K/AKT pathway. PRL-linked pathways exerting a negative control on various CYPs, and inactivation of the glucocorticoid-linked pathways that positively control the AhR-regulated CYP1 genes, may also participate in the SULP-mediated repression of both, the constitutive and induced CYP1 expression. The present findings indicate that drugs acting as D2-dopamine receptor antagonists can modify several hormone systems that regulate the expression of CYP1A1, CYP1A2 and CYP1B1, and may affect the toxicity and carcinogenicity outcome of numerous toxicants and pre-carcinogenic substances. Therefore, these drugs could be considered as a part of the strategy to reduce the risk of exposure to environmental pollutants and pre-carcinogens.


Subject(s)
Cytochrome P-450 CYP1A1/metabolism , Cytochrome P-450 CYP1B1/metabolism , Dopamine D2 Receptor Antagonists/chemistry , Gene Expression Regulation, Enzymologic , Liver/metabolism , Animals , Benzo(a)pyrene/chemistry , Carcinogens/chemistry , Cytochrome P-450 CYP1A2 , Cytochrome P-450 Enzyme System/metabolism , Cytochromes/metabolism , Dopamine/genetics , Down-Regulation , Gene Expression Profiling , Glucocorticoids/metabolism , Hepatocytes/metabolism , Insulin/metabolism , Liver/drug effects , Male , Microsomes, Liver/metabolism , Prolactin/metabolism , Rats , Rats, Wistar , Receptors, Aryl Hydrocarbon/metabolism , Receptors, Dopamine D2/metabolism , Signal Transduction , Thyroid Hormones/metabolism
2.
Arch Toxicol ; 83(6): 571-80, 2009 Jun.
Article in English | MEDLINE | ID: mdl-18754103

ABSTRACT

Increased activity of CYP2E1 has been associated with increased risk of chemically-mediated cancers, through enhanced activation of a variety of procarcinogens. In this context, inhibition of CYP2E1 is potentially of significance in xenobiotic toxicity. The aim of the present study was to test the hypothesis that quinacrine inhibits hepatic CYP2E1. For this purpose, disulfiram (75 mg/kg i.p) as an inhibitor and isoniazid (100 mg/kg i.p) as an inducer of CYP2E1, as well as quinacrine (50 mg/kg i.p) were administered to Wistar rats and the hepatic activity of CYP2E1 was measured. The expression of CYP2E1 was further assessed by Western blot analysis. As expected, disulfiram inhibited, while isoniazid induced the activity and expression of the enzyme. Interestingly, treatment with quinacrine resulted in a significant decrease of CYP2E1 activity and expression. To investigate any similarities in the inhibition of CYP2E1 by quinacrine and disulfiram, molecular modeling techniques were adopted and revealed that quinacrine molecule anchors inside the same binding pocket of the protein where disulfiram is also attached. Finally, as assessed by the sister chromatid exchanges (SCE) assay, quinacrine was demonstrated to reduce the mutagenic effects of the tobacco-specific N-nitrosamine 4-(methyl nitrosamino)-1-(3-pyridyl)-1-butanone (NNK), which is known to be converted to active mutagen in the liver principally through CYP2E1. We suggest that these antimutagenic effects of quinacrine could be possibly attributed, at least in part, to its ability to block the bioactivation of NNK, mainly by the inhibition of CYP2E1. Our results, even preliminary, indicate that quinacrine as an inhibitor of CYP2E1 might be protective against chemically-induced toxicities such as NNK-induced mutagenicity.


Subject(s)
Antimutagenic Agents/pharmacology , Cytochrome P-450 CYP2E1 Inhibitors , Enzyme Inhibitors/pharmacology , Quinacrine/pharmacology , Adult , Animals , Binding Sites , Blotting, Western , Disulfiram/pharmacology , Female , Gene Expression Regulation, Enzymologic/drug effects , Humans , Isoniazid/pharmacology , Male , Models, Molecular , Mutagens/toxicity , Nitrosamines/toxicity , Protein Binding , Rats , Rats, Wistar , Sister Chromatid Exchange
SELECTION OF CITATIONS
SEARCH DETAIL
...