Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 64(7): 3658-3676, 2021 04 08.
Article in English | MEDLINE | ID: mdl-33729773

ABSTRACT

RV521 is an orally bioavailable inhibitor of respiratory syncytial virus (RSV) fusion that was identified after a lead optimization process based upon hits that originated from a physical property directed hit profiling exercise at Reviral. This exercise encompassed collaborations with a number of contract organizations with collaborative medicinal chemistry and virology during the optimization phase in addition to those utilized as the compound proceeded through preclinical and clinical evaluation. RV521 exhibited a mean IC50 of 1.2 nM against a panel of RSV A and B laboratory strains and clinical isolates with antiviral efficacy in the Balb/C mouse model of RSV infection. Oral bioavailability in preclinical species ranged from 42 to >100% with evidence of highly efficient penetration into lung tissue. In healthy adult human volunteers experimentally infected with RSV, a potent antiviral effect was observed with a significant reduction in viral load and symptoms compared to placebo.


Subject(s)
Antiviral Agents/pharmacology , Benzimidazoles/pharmacology , Respiratory Syncytial Virus, Human/drug effects , Virus Internalization/drug effects , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacokinetics , Benzimidazoles/chemical synthesis , Benzimidazoles/pharmacokinetics , Biological Availability , Cell Line, Tumor , Clinical Trials as Topic , Drug Discovery , Humans , Microbial Sensitivity Tests , Protein Binding , Viral Fusion Proteins/metabolism
2.
Article in English | MEDLINE | ID: mdl-31712214

ABSTRACT

Effective treatments for respiratory syncytial virus (RSV) infection are lacking. Here, we report a human proof-of-concept study for RV521, a small-molecule antiviral inhibitor of the RSV-F protein. In this randomized, double-blind, placebo-controlled trial, healthy adults were challenged with RSV-A Memphis-37b. After infection was confirmed (or 5 days after challenge virus inoculation), subjects received RV521 (350 mg or 200 mg) or placebo orally every 12 h for 5 days. The primary endpoint was area under the curve (AUC) for viral load, as assessed by reverse transcriptase quantitative PCR (RT-qPCR) of nasal wash samples. The primary efficacy analysis set included subjects successfully infected with RSV who received ≥1 dose of study drug. A total of 66 subjects were enrolled (n = 22 per group); 53 were included in the primary analysis set (RV521 350 mg: n = 16; 200 mg: n = 18; placebo: n = 19). The mean AUC of RT-qPCR-assessed RSV viral load (log10 PFU equivalents [PFUe]/ml · h) was significantly lower with RV521 350 mg (185.26; standard error [SE], 31.17; P = 0.002) and 200 mg (224.35; SE, 37.60; P = 0.007) versus placebo (501.39; SE, 86.57). Disease severity improved with RV521 350 mg and 200 mg versus placebo (P = 0.002 and P = 0.009, respectively, for AUC total symptom score [score × hours]). Daily nasal mucus weight was significantly reduced (P = 0.010 and P = 0.038 for RV521 350 mg and 200 mg, respectively, versus placebo). All treatment-emergent adverse events were grade 1 or 2. No subjects discontinued due to adverse events. There was no evidence of clinically significant viral resistance, and only three variants were detected. RV521 effectively reduced RSV viral load and disease severity in humans and was well tolerated. (This study has been registered at ClinicalTrials.gov under registration no. NCT03258502.).


Subject(s)
Antiviral Agents/pharmacology , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Virus, Human/drug effects , Viral Fusion Proteins/antagonists & inhibitors , Adolescent , Adult , Antiviral Agents/pharmacokinetics , Area Under Curve , Double-Blind Method , Female , Humans , Male , Middle Aged , Placebos , Respiratory Syncytial Virus Infections/virology , Severity of Illness Index , Treatment Outcome , Viral Load/drug effects , Young Adult
3.
Dalton Trans ; 44(11): 5197-204, 2015 Mar 21.
Article in English | MEDLINE | ID: mdl-25687725

ABSTRACT

Following a systematic search of desferrithiocin analogs, a polyether derivative, deferitazole (formerly FBS0701), has entered into phase 1 and 2 clinical trials with promising biological properties. However, until now, detailed physicochemical properties of this chelator have not been reported. The compound displays a high affinity and selectivity for iron(III) as demonstrated by the log ß2 = 33.39 ± 0.03 and the pFe(3+) value of 22.3. Two equilibrating isomeric forms of the iron(III) complex exist under biological conditions. Deferitazole also binds the trivalent metals Al(III) and La(III) with high affinity; log ß2 values, 26.68 and 21.55 respectively. The affinity of deferitazole for divalent cations is somewhat lower, with the exception of Cu(II) which possesses a log ß2 value of 25.5; deferitazole scavenges iron from labile sources such as citrate and albumin with efficiencies comparable with those of other therapeutic iron chelators, including deferasirox, deferiprone and desferrioxamine. The Fe(III)(deferitazole)2 is stable under physiological conditions and does not redox cycle. The high affinity of deferitazole for iron(III) renders it unlikely that this chelator will lead to the redistribution of iron and consequently deferitazole shows considerable promise as a therapeutic iron(III) chelator.


Subject(s)
Ethyl Ethers/chemistry , Iron Chelating Agents/chemistry , Iron/chemistry , Thiazoles/chemistry , Administration, Oral , Electrochemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...