Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
2.
Cell Rep Methods ; 3(11): 100642, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37963464

ABSTRACT

To address the needs of the life sciences community and the pharmaceutical industry in pre-clinical drug development to both maintain and continuously assess tissue metabolism and function with simple and rapid systems, we improved on the initial BaroFuse to develop it into a fully functional, pumpless, scalable multi-channel fluidics instrument that continuously measures changes in oxygen consumption and other endpoints in response to test compounds. We and several other laboratories assessed it with a wide range of tissue types including retina, pancreatic islets, liver, and hypothalamus with both aqueous and gaseous test compounds. The setup time was less than an hour for all collaborating groups, and there was close agreement between data obtained from the different laboratories. This easy-to-use system reliably generates real-time metabolic and functional data from tissue and cells in response to test compounds that will address a critical need in basic and applied research.


Subject(s)
Islets of Langerhans , Islets of Langerhans/metabolism , Insulin Secretion , Oxygen/metabolism , Oxygen Consumption , Gases/metabolism
3.
iScience ; 26(10): 108021, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37841591

ABSTRACT

Nutritional deprivation occurring in most preterm infants postnatally can induce hyperglycemia, a significant and independent risk factor for suppressing physiological retinal vascularization (Phase I retinopathy of prematurity (ROP)), leading to compensatory but pathological neovascularization. Amino acid supplementation reduces retinal neovascularization in mice. Little is known about amino acid contribution to Phase I ROP. In mice modeling hyperglycemia-associated Phase I ROP, we found significant changes in retinal amino acids (including most decreased L-leucine, L-isoleucine, and L-valine). Parenteral L-isoleucine suppressed physiological retinal vascularization. In premature infants, severe ROP was associated with a higher mean intake of parenteral versus enteral amino acids in the first two weeks of life after adjustment for treatment group, gestational age at birth, birth weight, and sex. The number of days with parenteral amino acids support independently predicted severe ROP. Further understanding and modulating amino acids may help improve nutritional intervention and prevent Phase I ROP.

4.
Exp Eye Res ; 234: 109591, 2023 09.
Article in English | MEDLINE | ID: mdl-37481224

ABSTRACT

X-linked juvenile retinoschisis (XLRS), a hereditary retinal disorder primarily affecting males, is characterized by the formation of cystic spaces between the outer plexiform layer and outer nuclear layer of the retina. Mutations in the RS1 gene, which encodes the extracellular binding protein retinoschisin, are responsible for XLRS pathogenesis. While the role of retinoschisin in maintaining retinal integrity is well established, there is growing evidence suggesting compromised photoreceptor function in XLRS. To investigate the molecular pathways affected by RS1 deficiency, particularly in phototransduction, we performed electroretinographic (ERG) and proteomic analyses on retinae from Rs1 knockout mice, a model of human XLRS. The Rs1 knockout mice had reduced ERG a-wave amplitudes. Correspondingly, differential expression analysis revealed downregulation of proteins crucial for phototransduction, with Ingenuity Pathway Analysis (IPA) highlighting "phototransduction" as the most significantly downregulated biological theme. Compensatory mechanisms were also observed in the IPA, including upregulation of synaptic remodeling, inflammation, cell adhesion, and G-protein signaling. These findings strongly implicate an underrecognized role of photoreceptor dysfunction in XLRS pathology. We speculate that entrapment of mutant retinoschisin protein within photoreceptor inner segments as well as disrupted reciprocal regulation between L-type voltage-gated calcium channels and retinoschisin contribute to the dysfunction in photoreceptors.


Subject(s)
Retinoschisis , Humans , Male , Animals , Mice , Retinoschisis/genetics , Proteomics , Cell Adhesion Molecules/genetics , Retina/metabolism , Mice, Knockout , Eye Proteins/metabolism
5.
Angiogenesis ; 26(3): 409-421, 2023 08.
Article in English | MEDLINE | ID: mdl-36943533

ABSTRACT

Hyperglycemia in early postnatal life of preterm infants with incompletely vascularized retinas is associated with increased risk of potentially blinding neovascular retinopathy of prematurity (ROP). Neovascular ROP (Phase II ROP) is a compensatory but ultimately pathological response to the suppression of physiological postnatal retinal vascular development (Phase I ROP). Hyperglycemia in neonatal mice which suppresses physiological retinal vascular growth is associated with decreased expression of systemic and retinal fibroblast growth factor 21 (FGF21). FGF21 administration promoted and FGF21 deficiency suppressed the physiological retinal vessel growth. FGF21 increased serum adiponectin (APN) levels and loss of APN abolished FGF21 promotion of physiological retinal vascular development. Blocking mitochondrial fatty acid oxidation also abolished FGF21 protection against delayed physiological retinal vessel growth. Clinically, preterm infants developing severe neovascular ROP (versus non-severe ROP) had a lower total lipid intake with more parenteral and less enteral during the first 4 weeks of life. Our data suggest that increasing FGF21 levels in the presence of adequate enteral lipids may help prevent Phase I retinopathy (and therefore prevent neovascular disease).


Subject(s)
Hyperglycemia , Retinopathy of Prematurity , Infant, Newborn , Humans , Animals , Mice , Infant, Premature , Hyperglycemia/complications , Lipids
6.
Cond Med ; 4(1): 58-68, 2021.
Article in English | MEDLINE | ID: mdl-34414361

ABSTRACT

Systemic conditioning therapeutics afford brain protection at all levels of organization, occurring autonomously for neurons, glia, vascular smooth muscle, and endothelium, which are mediated systemically for the adaptive and innate immune system. The present study was undertaken to examine acute (3 h) and delayed (2 days) gene expression changes in mouse cerebral microvessels following single hypoxic conditioning (HX1) and repetitive hypoxic conditioning (HX9), the latter for which we showed previously to extend focal stroke tolerance from days to months. Microarray (Illumina) analyses were performed on microvessel-enriched fractions of adult mouse brain obtained from the following five groups (naïve; HX1-3h; HX1-2days; HX9-3h; HX9-2days). Differentially expressed genes were analyzed bioinformatically using Ingenuity Pathway Analysis software, with qPCR validating selected up- and down-regulated genes. As expected, some differentially expressed genes were common to more than one treatment or time point, whereas others were unique to treatment or time point. Bioinformatic analyses provided insights into acute (3h) inflammatory and immune signaling pathways that may be differentially activated by HX1 and HX9, with anti-inflammatory and trophic pathways coincident with the ischemia-tolerant phenotype two days after HX1. Interestingly, two days after HX9, microvessels were transcriptionally silent, with only five genes remaining differentially expressed relative to naïve mice. Our microarray findings and bioinformatic analyses suggest that cerebral microvessels from HX1-treated mice exhibit early activation of immune system signaling that is largely suppressed in microvessels from HX9-treated mice. These and other differences between these responses require further study, including at the proteomic level, and with pharmacologic and genetic experiments designed to reveal causality, to reveal further insights into the mechanisms underlying long-lasting stroke tolerance.

7.
Aging Dis ; 12(2): 671-683, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33815890

ABSTRACT

The 2019-2020 SARS-related coronavirus-2 (SARS-CoV-2) pandemic has brought unprecedented challenges to healthcare sectors around the world. As of November 2020, there have been over 64 million confirmed cases and approaching 2 million deaths globally. Despite the large number of positive cases, there are very limited established standards of care and therapeutic options available. To date, there is still no Food and Drug Administration (FDA) approved vaccine for COVID-19, although there are several options in various clinical trial stages. Herein, we have performed a global review evaluating the roles of age and sex on COVID-19 hospitalizations, ICU admissions, deaths in hospitals, and deaths in nursing homes. We have identified a trend in which elderly and male patients are significantly affected by adverse outcomes. There is evidence suggesting that sex hormone levels can influence immune system function against SARS-CoV-2 infection, thus reducing the adverse effects of COVID-19. Since older adults have lower levels of these sex hormones, we therefore speculate, within rational scientific context, that sex steroids, such as estrogen and progesterone, needs further consideration for use as alternative therapeutic option for treating COVID-19 elderly patients. To our knowledge, this is the first comprehensive article evaluating the significance of sex hormones in COVID-19 outcomes in older adults.

8.
J Cereb Blood Flow Metab ; 41(2): 397-412, 2021 02.
Article in English | MEDLINE | ID: mdl-32241204

ABSTRACT

Sex differences in mitochondrial numbers and function are present in large cerebral arteries, but it is unclear whether these differences extend to the microcirculation. We performed an assessment of mitochondria-related proteins in cerebral microvessels (MVs) isolated from young, male and female, Sprague-Dawley rats. MVs composed of arterioles, capillaries, and venules were isolated from the cerebrum and used to perform a 3 versus 3 quantitative, multiplexed proteomics experiment utilizing tandem mass tags (TMT), coupled with liquid chromatography/mass spectrometry (LC/MS). MS data and bioinformatic analyses were performed using Proteome Discoverer version 2.2 and Ingenuity Pathway Analysis. We identified a total of 1969 proteins, of which 1871 were quantified by TMT labels. Sixty-four proteins were expressed significantly (p < 0.05) higher in female samples compared with male samples. Females expressed more mitochondrial proteins involved in energy production, mitochondrial membrane structure, anti-oxidant enzyme proteins, and those involved in fatty acid oxidation. Conversely, males had higher expression levels of mitochondria-destructive proteins. Our findings reveal, for the first time, the full extent of sexual dimorphism in the mitochondrial metabolic protein profiles of MVs, which may contribute to sex-dependent cerebrovascular and neurological pathologies.


Subject(s)
Computational Biology/methods , Microvessels/metabolism , Mitochondria/metabolism , Proteomics/methods , Animals , Female , Male , Rats , Rats, Sprague-Dawley
9.
Int J Mol Sci ; 23(1)2021 Dec 26.
Article in English | MEDLINE | ID: mdl-35008662

ABSTRACT

Metabolic remodeling plays an important role in the pathophysiology of heart failure (HF). We sought to characterize metabolic remodeling and implicated signaling pathways in two rat models of early systolic dysfunction (MOD), and overt systolic HF (SHF). Tandem mass tag-labeled shotgun proteomics, phospho-(p)-proteomics, and non-targeted metabolomics analyses were performed in left ventricular myocardium tissue from Sham, MOD, and SHF using liquid chromatography-mass spectrometry, n = 3 biological samples per group. Mitochondrial proteins were predominantly down-regulated in MOD (125) and SHF (328) vs. Sham. Of these, 82% (103/125) and 66% (218/328) were involved in metabolism and respiration. Oxidative phosphorylation, mitochondrial fatty acid ß-oxidation, Krebs cycle, branched-chain amino acids, and amino acid (glutamine and tryptophan) degradation were highly enriched metabolic pathways that decreased in SHF > MOD. Glycogen and glucose degradation increased predominantly in MOD, whereas glycolysis and pyruvate metabolism decreased predominantly in SHF. PKA signaling at the endoplasmic reticulum-mt interface was attenuated in MOD, whereas overall PKA and AMPK cellular signaling were attenuated in SHF vs. Sham. In conclusion, metabolic remodeling plays an important role in myocardial remodeling. PKA and AMPK signaling crosstalk governs metabolic remodeling in progression to SHF.


Subject(s)
Heart Failure, Systolic/metabolism , Metabolic Networks and Pathways , Metabolomics , Adenylate Kinase/metabolism , Animals , Chromatography, Liquid , Citric Acid Cycle , Cyclic AMP-Dependent Protein Kinases/metabolism , Glycolysis , Mass Spectrometry , Mitochondria/metabolism , Oxidative Phosphorylation , Rats , Signal Transduction
10.
Invest Ophthalmol Vis Sci ; 61(11): 15, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32910134

ABSTRACT

Purpose: Stress can lead to short- or long-term changes in phenotype. Accumulating evidence also supports the transmission of maladaptive phenotypes, induced by adverse stressors, through the germline to manifest in subsequent generations, providing a novel mechanistic basis for the heritability of disease. In the present study in mice, we tested the hypothesis that repeated presentations of a nonharmful conditioning stress, demonstrated previously to protect against retinal ischemia, will also provide ischemic protection in the retinae of their untreated, first-generation (F1) adult offspring. Methods: Swiss-Webster ND4 outbred mice were mated following a 16-week period of brief, every-other-day conditioning exposures to mild systemic hypoxia (repetitive hypoxic conditioning, RHC). Retinae of their 5-month-old F1 progeny were subjected to unilateral ischemia. Scotopic electroretinography quantified postischemic outcomes. The injury-resilient retinal proteome was revealed by quantitative mass spectrometry, and bioinformatic analyses identified the biochemical pathways and networks in which these differentially expressed proteins operate. Results: Significant resilience to injury in both sexes was documented in F1 mice derived from RHC-treated parents, relative to matched F1 adult progeny derived from normoxic control parents. Ischemia-induced increases and decreases in the expression of many visual transduction proteins that are integral to photoreceptor function were abrogated by parental RHC, providing a molecular basis for the observed functional protection. Conclusions: Our proteomic analyses provided mechanistic insights into the molecular manifestation of the inherited, injury-resilient phenotype. To our knowledge, this is the first study in a mammalian model documenting the reprogramming of heritability to promote disease resilience in the next generation.


Subject(s)
Ischemia/prevention & control , Ischemic Preconditioning/methods , Neuroprotection , Proteome/metabolism , Proteomics/methods , Retinal Diseases/prevention & control , Retinal Vessels/pathology , Animals , Disease Models, Animal , Electroretinography , Female , Ischemia/diagnosis , Ischemia/metabolism , Male , Mice , Mice, Inbred Strains , Retinal Diseases/diagnosis , Retinal Diseases/metabolism
11.
Physiol Genomics ; 52(1): 20-34, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31762411

ABSTRACT

Recent evidence from our laboratory documents functional resilience to retinal ischemic injury in untreated mice derived from parents exposed to repetitive hypoxic conditioning (RHC) before breeding. To begin to understand the epigenetic basis of this intergenerational protection, we used methylated DNA immunoprecipitation and sequencing to identify genes with differentially methylated promoters (DMGPs) in the prefrontal cortex of mice treated directly with the same RHC stimulus (F0-RHC) and in the prefrontal cortex of their untreated F1-generation offspring (F1-*RHC). Subsequent bioinformatic analyses provided key mechanistic insights into how changes in gene expression secondary to promoter hypo- and hypermethylation might afford such protection within and across generations. We found extensive changes in DNA methylation in both generations consistent with the expression of many survival-promoting genes, with twice the number of DMGPs in the cortex of F1*RHC mice relative to their F0 parents that were directly exposed to RHC. In contrast to our hypothesis that similar epigenetic modifications would be realized in the cortices of both F0-RHC and F1-*RHC mice, we instead found relatively few DMGPs common to both generations; in fact, each generation manifested expected injury resilience via distinctly unique gene expression profiles. Whereas in the cortex of F0-RHC mice, predicted protein-protein interactions reflected activation of an anti-ischemic phenotype, networks activated in F1-*RHC cortex comprised networks indicative of a much broader cytoprotective phenotype. Altogether, our results suggest that the intergenerational transfer of an acquired phenotype to offspring does not necessarily require the faithful recapitulation of the conditioning-modified DNA methylome of the parent.


Subject(s)
DNA Methylation/genetics , Hypoxia/genetics , Animals , CA1 Region, Hippocampal/pathology , Cell Survival , Female , Gene Regulatory Networks , Male , Mice , Pedigree , Promoter Regions, Genetic , Pyramidal Cells/pathology , Signal Transduction/genetics
12.
Mol Vis ; 24: 875-889, 2018.
Article in English | MEDLINE | ID: mdl-30713425

ABSTRACT

Purpose: Diverse groups of proteins play integral roles in both the physiology and pathophysiology of the retina. However, thorough proteomic analyses of retinas of experimental species are currently unavailable. The purpose of the present paper is providing the field with a comprehensive proteomic characterization of the retina of a commonly used laboratory mouse using a discovery-based mass spectrometry (MS) approach. Methods: Retinas from eight male and eight female 30-week-old outbred ND4 Swiss Webster mice were harvested and immediately processed for MS analysis on a Thermo Fisher (TF) Fusion Orbitrap MS. The retinal proteome and phosphoproteome were identified and subsequently analyzed using Proteome Discoverer 2.2 and Panther-GeneGo. SEQUEST-HT scoring was used for analysis, and the reference protein FASTA database was from Mus musculus. Specifically, three technical repeats were performed for each biological sample. For characterization, only high-scoring peptides were considered, with a false discovery rate (FDR) of <1%. Downstream bioinformatic analysis used Ingenuity Pathway Analysis (IPA; Qiagen). Results: Using Proteome Discoverer 2.2, 4,767 different proteins were identified and segregated into 26 major protein classes, 9 functional molecular classes, and 12 categories of biological processes. The five largest protein classes included the following: nucleic acid binding (17%), hydrolases (13%), enzyme modulators (10%), transferases (9%), and oxidoreductases (6%). "Binding" and "catalytic" proteins contributed to 81% of the molecular function class at 37% and 42%, respectively. "Cellular processing" and "metabolic processes" contributed the most to biologic activity, at 31% and 26%, respectively. Phosphopeptide enrichment yielded the identification of 610 additional unique proteins that were not originally identified. The two datasets combined produced an adult mouse retinal proteome consisting of 5,377 unique proteins. Overall, 41% of the retinal proteome was phosphorylated. The overwhelming diversity of retinal protein functionality was reflected through further analyses revealing 2,086 unique pathway hits across 241 different pathways (TF). A core analysis summary report was performed in IPA (Qiagen) to analyze the top signaling networks, protein-protein interaction (PPI) enrichments, and canonical pathways. Conclusions: Using this high-throughput technique, we have further deciphered and updated the diverse proteome of the mouse retina, including the phosphoproteome, thereby providing the most comprehensive proteomic profile for this tissue known to date. These findings, and the bioinformatic analyses we also provided, establish a platform for future studies, facilitating the elucidation of the relevance of these proteins to the molecular and cellular pathologies that underlie retinal function and disease.


Subject(s)
Gene Regulatory Networks , Phosphoproteins/genetics , Proteome/genetics , Retina/metabolism , Animals , Computational Biology/methods , Female , Gene Expression Profiling , Gene Expression Regulation , Gene Ontology , Male , Mass Spectrometry/methods , Metabolic Networks and Pathways/genetics , Mice , Molecular Sequence Annotation , Phosphoproteins/classification , Phosphoproteins/isolation & purification , Phosphoproteins/metabolism , Proteome/classification , Proteome/isolation & purification , Proteome/metabolism , Retina/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...