Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 132(18): 186402, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38759200

ABSTRACT

A gallium interstitial defect is thought to be responsible for the spectacular spin-dependent recombination in GaAs_{1-x}N_{x} dilute nitrides. Current understanding associates this defect with at least two in-gap levels corresponding to the (+/0) and (++/+) charge-state transitions. Using a spin-sensitive photoinduced current transient spectroscopy, the in-gap electronic structure of a x=0.021 alloy is revealed. The (+/0) state lies ≈0.27 eV below the conduction band edge, and an anomalous, negative activation energy reveals the presence of not one but two other in-gap states. The observations are consistent with a (++/+) state ≈0.19 eV above the valence band edge, and a (+++/++) state ≈25 meV above the valence band edge.

2.
Water Sci Technol ; 81(1): 1-9, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32293583

ABSTRACT

Membrane bioreactor (MBR) models are useful tools for both design and management. The system complexity is high due to the involved number of processes which can be clustered in biological and physical ones. Literature studies are present and need to be harmonized in order to gain insights from the different studies and allow system optimization by applying a control. This position paper aims at defining the current state of the art of the main integrated MBR models reported in the literature. On the basis of a modelling review, a standardized terminology is proposed to facilitate the further development and comparison of integrated membrane fouling models for aerobic MBRs.


Subject(s)
Bioreactors , Membranes, Artificial , Models, Theoretical
3.
Math Biosci ; 322: 108322, 2020 04.
Article in English | MEDLINE | ID: mdl-32057781

ABSTRACT

We study mechanisms that can produce an increase of biomass production in batch processes when considering mixed cultures, compared to pure cultures. We show that growth thresholds or variable yields can produce 'overyielding', while this is not possible in the classical batch model with multiple species. We give sufficient conditions on the characteristics of the species to obtain overyielding, and illustrate these theoretical results with numerical simulations. This work provides new insights on species complementary in models of mixed cultures, without having to consider direct interactions terms between species as, for instance in the well known Generalized Lotka-Volterra model.


Subject(s)
Biodiversity , Biomass , Models, Biological , Computer Simulation
4.
Nanotechnology ; 30(30): 304001, 2019 Jul 26.
Article in English | MEDLINE | ID: mdl-30965307

ABSTRACT

We report on the structural and optical properties of GaAs0.7P0.3/GaP core-shell nanowires (NWs) for future photovoltaic applications. The NWs are grown by self-catalyzed molecular beam epitaxy. Scanning transmission electron microscopy (STEM) analyses demonstrate that the GaAsP NW core develops an inverse-tapered shape with a formation of an unintentional GaAsP shell having a lower P content. Without surface passivation, this unintentional shell produces no luminescence because of strong surface recombination. However, passivation of the surface with a GaP shell leads to the appearance of a secondary peak in the luminescence spectrum arising from this unintentional shell. The attribution of the luminescence peaks is confirmed by correlated cathodoluminescence and STEM analyses of the same NW.

5.
Nanotechnology ; 30(21): 214005, 2019 May 24.
Article in English | MEDLINE | ID: mdl-30736031

ABSTRACT

Optical properties of GaN nanowires (NWs) grown on chemical vapor deposited-graphene transferred on an amorphous support are reported. The growth temperature was optimized to achieve a high NW density with a perfect selectivity with respect to a SiO2 surface. The growth temperature window was found to be rather narrow (815°C ± 5°C). Steady-state and time-resolved photoluminescence from GaN NWs grown on graphene was compared with the results for GaN NWs grown on conventional substrates within the same molecular beam epitaxy reactor showing a comparable optical quality for different substrates. Growth at temperatures above 820 °C led to a strong NW density reduction accompanied with a diameter narrowing. This morphology change leads to a spectral blueshift of the donor-bound exciton emission line due to either surface stress or dielectric confinement. Graphene multi-layered micro-domains were explored as a way to arrange GaN NWs in a hollow hexagonal pattern. The NWs grown on these domains show a luminescence spectral linewidth as low as 0.28 meV (close to the set-up resolution limit).

6.
Nanotechnology ; 28(49): 495707, 2017 Dec 08.
Article in English | MEDLINE | ID: mdl-29057754

ABSTRACT

We report on the structural and optical properties of GaAsP nanowires (NWs) grown by molecular-beam epitaxy. By adjusting the alloy composition in the NWs, the transition energy was tuned to the optimal value required for tandem III-V/silicon solar cells. We discovered that an unintentional shell was also formed during the GaAsP NW growth. The NW surface was passivated by an in situ deposition of a radial Ga(As)P shell. Different shell compositions and thicknesses were investigated. We demonstrate that the optimal passivation conditions for GaAsP NWs (with a gap of 1.78 eV) are obtained with a 5 nm thick GaP shell. This passivation enhances the luminescence intensity of the NWs by 2 orders of magnitude and yields a longer luminescence decay. The luminescence dynamics changes from single exponential decay with a 4 ps characteristic time in non-passivated NWs to a bi-exponential decay with characteristic times of 85 and 540 ps in NWs with GaP shell passivation.

7.
Nanotechnology ; 27(32): 325403, 2016 Aug 12.
Article in English | MEDLINE | ID: mdl-27363777

ABSTRACT

We demonstrate the first piezo-generator integrating a vertical array of GaN nanowires (NWs). We perform a systematic multi-scale analysis, going from single wire properties to macroscopic device fabrication and characterization, which allows us to establish for GaN NWs the relationship between the material properties and the piezo-generation, and to propose an efficient piezo-generator design. The piezo-conversion of individual MBE-grown p-doped GaN NWs in a dense array is assessed by atomic force microscopy (AFM) equipped with a Resiscope module yielding an average output voltage of 228 ± 120 mV and a maximum value of 350 mV generated per NW. In the case of p-doped GaN NWs, the piezo-generation is achieved when a positive piezo-potential is created inside the nanostructures, i.e. when the NWs are submitted to compressive deformation. The understanding of the piezo-generation mechanism in our GaN NWs, gained from AFM analyses, is applied to design a piezo-generator operated under compressive strain. The device consists of NW arrays of several square millimeters in size embedded into spin-on glass with a Schottky contact for rectification and collection of piezo-generated carriers. The generator delivers a maximum power density of ∼12.7 mW cm(-3). This value sets the new state of the art for piezo-generators based on GaN NWs and more generally on nitride NWs, and offers promising prospects for the use of GaN NWs as high-efficiency ultra-compact energy harvesters.

8.
Nanotechnology ; 27(13): 135602, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26895252

ABSTRACT

We study the self-induced growth of GaN nanowires on silica. Although the amorphous structure of this substrate offers no possibility of an epitaxial relationship, the nanowires are remarkably aligned with the substrate normal whereas, as expected, their in-plane orientation is random. Their structural and optical characteristics are compared to those of GaN nanowires grown on standard crystalline Si (111) substrates. The polarity inversion domains are much less frequent, if not totally absent, in the nanowires grown on silica, which we find to be N-polar. This work demonstrates that high-quality vertical GaN nanowires can be elaborated without resorting to bulk crystalline substrates.

9.
Water Sci Technol ; 70(1): 40-6, 2014.
Article in English | MEDLINE | ID: mdl-25026577

ABSTRACT

Cake fouling is the leading cause of membrane permeability decrease when filtering mixed liquor suspension containing high suspended solid concentrations. A simple model is proposed to simulate the cake resistance evolution with time by considering a macro-scale fouling linked only to the accumulation of particles on the membrane surface. This accumulation appears as the difference between the flux of deposited particles due to the filtration and the flux of particles detached from the membrane surface due to the tangential shear stresses caused by recirculation flow in the sidestream membrane bioreactor (MBR) or gas sparging close to the membrane surface for submerged MBR configuration. Two determining parameters were then highlighted: the specific cake resistance and the 'shear parameter'. Based on these parameters it is possible to predict model outputs as cake resistance and permeate flux evolution for short-time filtration periods.


Subject(s)
Bioreactors , Membranes, Artificial , Waste Disposal, Fluid/instrumentation , Computer Simulation , Filtration , Gases , Sewage , Shear Strength , Stress, Mechanical , Temperature , Time Factors , Waste Disposal, Fluid/methods , Water Purification/methods
10.
Sci Total Environ ; 434: 71-8, 2012 Sep 15.
Article in English | MEDLINE | ID: mdl-22446108

ABSTRACT

Considerable amounts of nitrogen (N) and phosphorus (P) fertilizers have been mis-used in agroecosystems, with profound alteration to the biogeochemical cycles of these two major nutrients. To reduce excess fertilizer use, plant-mediated nutrient supply through N(2)-fixation, transfer of fixed N and mobilization of soil P may be important processes for the nutrient economy of low-input tree-based intercropping systems. In this study, we quantified plant performance, P acquisition and belowground N transfer from the N(2)-fixing tree to the cereal crop under varying root contact intensity and P supplies. We cultivated Acacia senegal var senegal in pot-culture containing 90% sand and 10% vermiculite under 3 levels of exponentially supplied P. Acacia plants were then intercropped with durum wheat (Triticum turgidum durum) in the same pots with variable levels of adsorbed P or transplanted and intercropped with durum wheat in rhizoboxes excluding direct root contact on P-poor red Mediterranean soils. In pot-culture, wheat biomass and P content increased in relation to the P gradient. Strong isotopic evidence of belowground N transfer, based on the isotopic signature (δ(15)N) of tree foliage and wheat shoots, was systematically found under high P in pot-culture, with an average N transfer value of 14.0% of wheat total N after 21 days of contact between the two species. In the rhizoboxes, we observed limitations on growth and P uptake of intercropped wheat due to competitive effects on soil resources and minimal evidence of belowground N transfer of N from acacia to wheat. In this intercrop, specifically in pot-culture, facilitation for N transfer from the legume tree to the crop showed to be effective especially when crop N uptake was increased (or stimulated) as occurred under high P conditions and when competition was low. Understanding these processes is important to the nutrient economy and appropriate management of legume-based agroforestry systems.


Subject(s)
Crops, Agricultural , Edible Grain , Fabaceae/metabolism , Nitrogen/metabolism , Phosphorus/metabolism
11.
J Phys Condens Matter ; 23(32): 325801, 2011 Aug 17.
Article in English | MEDLINE | ID: mdl-21785181

ABSTRACT

The energy transitions of GaAsSbN/GaAs strained-layer single quantum wells (QWs), grown by molecular-beam epitaxy, are studied in detail, using photoluminescence (PL) and photoreflectance (PR) spectroscopies. The optical transitions energy observed in the PL and PR spectra of GaAsSbN/GaAs QWs show a strong decrease with a small increase in the N composition. These effects are explained through the interaction between the conduction band and a narrow resonant band formed by nitrogen states in the GaAsSbN alloy. The temperature dependence of ground-state energy of strained-layer QWs is analyzed using the Bose-Einstein relation in the temperature range from 9 to 295 K. The parameters that describe the temperature variations of the ground-state energies are evaluated and discussed.

12.
Nanotechnology ; 22(24): 245606, 2011 Jun 17.
Article in English | MEDLINE | ID: mdl-21508494

ABSTRACT

GaN nanowires are synthesized by plasma-assisted molecular beam epitaxy on Si(111) substrates. The strong impact of the cell orientation relative to the substrate on the nanowire morphology is shown. To study the kinetics of growth, thin AlN markers are introduced periodically during NW growth. These markers are observed in single nanowires by transmission electron microscopy, giving access to the chronology of the nanowire formation and to the time evolution of the nanowire morphology. A long delay precedes the beginning of nanowire formation. Then, their elongation proceeds at a constant rate. Later, shells develop on the side-wall facets by ascending growth of layer bunches which first agglomerate at the nanowire foot.

13.
Nano Lett ; 11(3): 1247-53, 2011 Mar 09.
Article in English | MEDLINE | ID: mdl-21344916

ABSTRACT

We report on the new mode of the vapor-liquid-solid nanowire growth with a droplet wetting the sidewalls and surrounding the nanowire rather than resting on its top. It is shown theoretically that such an unusual configuration happens when the growth is catalyzed by a lower surface energy metal. A model of a nonspherical elongated droplet shape in the wetting case is developed. Theoretical predictions are compared to the experimental data on the Ga-catalyzed growth of GaAs nanowires by molecular beam epitaxy. In particular, it is demonstrated that the experimentally observed droplet shape is indeed nonspherical. The new VLS mode has a major impact on the crystal structure of GaAs nanowires, helping to avoid the uncontrolled zinc blende-wurtzite polytylism under optimized growth conditions. Since the triple phase line nucleation is suppressed on surface energetic grounds, all nanowires acquire pure zinc blende phase along the entire length, as demonstrated by the structural studies of our GaAs nanowires.

14.
J Plant Physiol ; 168(8): 776-81, 2011 May 15.
Article in English | MEDLINE | ID: mdl-21211863

ABSTRACT

There remains conflicting evidence on the relationship between P supply and biological N(2)-fixation rates, particularly N(2)-fixing plant adaptive strategies under P limitation. This is important, as edaphic conditions inherent to many economically and ecologically important semi-arid leguminous tree species, such as Acacia senegal, are P deficient. Our research objective was to verify N acquisition strategies under phosphorus limitations using isotopic techniques. Acacia senegal var. senegal was cultivated in sand culture with three levels of exponentially supplied phosphorus [low (200 µmol of P seedling(-1) over 12 weeks), mid (400 µmol) and high (600 µmol)] to achieve steady-state nutrition over the growth period. Uniform additions of N were also supplied. Plant growth and nutrition were evaluated. Seedlings exhibited significantly greater total biomass under high P supply compared to low P supply. Both P and N content significantly increased with increasing P supply. Similarly, N derived from solution increased with elevated P availability. However, both the number of nodules and the N derived from atmosphere, determined by the (15)N natural abundance method, did not increase along the P gradient. Phosphorus stimulated growth and increased mineral N uptake from solution without affecting the amount of N derived from the atmosphere. We conclude that, under non-limiting N conditions, A. senegal N acquisition strategies change with P supply, with less reliance on N(2)-fixation when the rhizosphere achieves a sufficient N uptake zone.


Subject(s)
Acacia/growth & development , Acacia/metabolism , Nitrogen Fixation/drug effects , Nitrogen/metabolism , Phosphorus/pharmacology , Biomass , Nitrogen/analysis , Nitrogen Isotopes/analysis , Phosphorus/analysis , Phosphorus/metabolism , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Plant Stems/growth & development , Plant Stems/metabolism , Rhizosphere , Seedlings/growth & development , Seedlings/metabolism , Time Factors
15.
Nanoscale Res Lett ; 5(10): 1692-7, 2010 Jul 24.
Article in English | MEDLINE | ID: mdl-21076695

ABSTRACT

The growth of inclined GaAs nanowires (NWs) during molecular beam epitaxy (MBE) on the rotating substrates is studied. The growth model provides explicitly the NW length as a function of radius, supersaturations, diffusion lengths and the tilt angle. Growth experiments are carried out on the GaAs(211)A and GaAs(111)B substrates. It is found that 20° inclined NWs are two times longer in average, which is explained by a larger impingement rate on their sidewalls. We find that the effective diffusion length at 550°C amounts to 12 nm for the surface adatoms and is more than 5,000 nm for the sidewall adatoms. Supersaturations of surface and sidewall adatoms are also estimated. The obtained results show the importance of sidewall adatoms in the MBE growth of NWs, neglected in a number of earlier studies.

16.
Nano Lett ; 10(4): 1198-201, 2010 Apr 14.
Article in English | MEDLINE | ID: mdl-20205446

ABSTRACT

In semiconducting nanowires, both zinc blende and wurtzite crystal structures can coexist. The band structure difference between the two structures can lead to charge confinement. Here we fabricate and study single quantum dot devices defined solely by crystal phase in a chemically homogeneous nanowire and observe single photon generation. More generally, our results show that this type of carrier confinement represents a novel degree of freedom in device design at the nanoscale.


Subject(s)
Indium/chemistry , Nanowires/chemistry , Phosphines/chemistry , Quantum Dots , Nanotechnology/instrumentation , Phosphines/chemical synthesis , Semiconductors
17.
Nanotechnology ; 20(41): 415701, 2009 Oct 14.
Article in English | MEDLINE | ID: mdl-19755725

ABSTRACT

We report the growth of GaAs/AlGaAs core-shell nanowires (NWs) on GaAs(111)B substrates by Au-assisted molecular beam epitaxy. Electron microscopy shows the formation of a wurtzite AlGaAs shell structure both in the radial and the axial directions outside a wurtzite GaAs core. With higher Al content, a lower axial and a higher radial growth rate of the AlGaAs shell were observed. Room temperature and low temperature (4.4 K) micro-photoluminescence measurements show a much higher radiative efficiency from the GaAs core after the NW is overgrown with a radial AlGaAs shell.


Subject(s)
Aluminum/chemistry , Arsenicals/chemistry , Gallium/chemistry , Nanotechnology/methods , Nanowires/chemistry , Microscopy, Electron, Scanning , Nanowires/ultrastructure
18.
Nat Mater ; 8(3): 198-202, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19219029

ABSTRACT

Generating, manipulating and detecting electron spin polarization and coherence at room temperature is at the heart of future spintronics and spin-based quantum information technology. Spin filtering, which is a key issue for spintronic applications, has been demonstrated by using ferromagnetic metals, diluted magnetic semiconductors, quantum point contacts, quantum dots, carbon nanotubes, multiferroics and so on. This filtering effect was so far restricted to a limited efficiency and primarily at low temperatures or under a magnetic field. Here, we provide direct and unambiguous experimental proof that an electron-spin-polarized defect, such as a Ga(i) self-interstitial in dilute nitride GaNAs, can effectively deplete conduction electrons with an opposite spin orientation and can thus turn the non-magnetic semiconductor into an efficient spin filter operating at room temperature and zero magnetic field. This work shows the potential of such defect-engineered, switchable spin filters as an attractive alternative to generate, amplify and detect electron spin polarization at room temperature without a magnetic material or external magnetic fields.

19.
J Phys Condens Matter ; 21(17): 174211, 2009 Apr 29.
Article in English | MEDLINE | ID: mdl-21825415

ABSTRACT

We report on a study of spin-dependent recombination processes (SDR) for conduction band electrons on deep paramagnetic centers in a series of GaAs(1-y)N(y) epilayers by time-resolved optical orientation experiments. We demonstrate that this dilute nitride compound can be used as an effective electron spin filter under a polarized optical excitation of appropriate intensity. This optimum intensity can moreover be controlled by adjusting the nitrogen composition in the layer.

20.
Water Sci Technol ; 58(2): 331-6, 2008.
Article in English | MEDLINE | ID: mdl-18701782

ABSTRACT

Nitrification is usually the bottleneck of biological nitrogen removal processes. In SBRs systems, it is not often enough to monitor dissolved oxygen, pH and ORP to spot problems which may occur in nitrification processes. Therefore, automated supervision systems should be designed to include the possibility of monitoring the activity of nitrifying populations. Though the applicability of set-point titration for monitoring biological processes has been widely demonstrated in the literature, the possibility of an automated procedure is still at its early stage of industrial development. In this work, the use of an at-line automated titrator named TITAAN (TITrimetric Automated ANalyser) is presented. The completely automated sensor enables us to track nitrification rate trend with time in an SBR, detecting the causes leading to slower specific nitrification rates. It was also possible to perform early detection of toxic compounds in the influent by assessing their effect on the nitrifying biomass. Nitrifications rates were determined with average errors+/-10% (on 26 tests), never exceeding 20% as compared with UV-spectrophotometric determinations.


Subject(s)
Automation , Bacteria/metabolism , Bioreactors , Nitrogen/metabolism , Biomass , Nitrogen/chemistry , Titrimetry/instrumentation , Titrimetry/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...