Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 670: 78-86, 2019 Jun 20.
Article in English | MEDLINE | ID: mdl-30903905

ABSTRACT

A major area of growth for "nano-enabled" products has been the addition of nanoparticles (NPs) to surface coatings including paints, stains and sealants. Zinc oxide (ZnO) NPs, long used in sunscreens and sunblocks, have found growing use in surface coating formulations to increase their UV resistance, especially on outdoor products. In this work, ZnO NPs, marketed as an additive to paints and stains, were dispersed in Milli-Q water and a commercial deck stain. Resulting solutions were applied to either Micronized-Copper Azole (MCA) pressure treated lumber or a commercially available composite decking. A portion of coated surfaces were placed outdoors to undergo environmental weathering, while the remaining samples were stored indoors to function as experimental controls. Weathered and control treatments were subsequently sampled periodically for 6 months using a simulated dermal contact method developed by the Consumer Product Safety Commission (CPSC). The release of ZnO NPs, and their associated degradation products, was determined through sequential filtration, atomic spectroscopy, X-Ray Absorption Fine Structure Spectroscopy, and electron microscopy. Across all treatments, the percentage of applied zinc released through simulated dermal contact did not exceed 4%, although transformation and release of zinc was highly dependent on dispersion medium. For MCA samples weathered outdoors, water-based applications released significantly more zinc than stain-based, 180 ±â€¯28, and 65 ±â€¯9 mg/m2 respectively. Moreover, results indicate that the number of contact events drives material release.

2.
Sci Total Environ ; 613-614: 714-723, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-28938214

ABSTRACT

A major area of growth for "nano-enabled" consumer products have been surface coatings, including paints stains and sealants. Ceria (CeO2) nanoparticles (NPs) are of interest as they have been used as additives in these these products to increase UV resistance. Currently, there is a lack of detailed information on the potential release, and speciation (i.e., ion vs. particle) of CeO2 NPs used in consumer-available surface coatings during intended use scenarios. In this study, both Micronized-Copper Azole pressure-treated lumber (MCA), and a commercially available composite decking were coated with CeO2 NPs dispersed in Milli-Q water or wood stain. Coated surfaces were divided into two groups. The first was placed outdoors to undergo environmental weathering, while the second was placed indoors to act as experimental controls. Both weathered surfaces and controls were sampled over a period of 6months via simulated dermal contact using methods developed by the Consumer Product Safety Commission (CPSC). The size and speciation of material released was determined through sequential filtration, total metals analysis, X-Ray Absorption Fine Structure Spectroscopy, and electron microscopy. The total ceria release from MCA coated surfaces was found to be dependent on dispersion matrix with aqueous applications releasing greater quantities of CeO2 than stain based applications, 66±12mg/m2 and 36±7mg/m2, respectively. Additionally, a substantial quantity of CeO2 was reduced to Ce(III), present as Ce(III)-organic complexes, over the 6-month experimental period in aqueous based applications.


Subject(s)
Cerium/metabolism , Nanoparticles/metabolism , Skin/chemistry , Wood/chemistry , Cerium/adverse effects , Environmental Health , Humans , Nanoparticles/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...