Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 151(9): 094303, 2019 Sep 07.
Article in English | MEDLINE | ID: mdl-31492063

ABSTRACT

Several new vibrational bands of the [12.5] Ω = 0+-X3Σ- Ω=0+ and the [15.9] B Ω = 0+-X3Σ- Ω=0+ transitions have been observed in high resolution absorption measurements recorded using Intracavity Laser Spectroscopy (ILS). These new bands have been rotationally analyzed and incorporated into a comprehensive PtS dataset that was fit to a mass-independent Dunham expression using PGOPHER. The comprehensive dataset included all reported field-free, gas phase spectroscopic data for PtS, including 32 Fourier transform microwave transitions (estimated accuracy: 1 kHz), 9 microwave/optical double resonance transitions (25 kHz), 51 millimeter and submillimeter transitions (25-50 kHz), 469 molecular beam-laser induced fluorescence transitions (0.003 cm-1), and 4870 ILS transitions (0.005 cm-1). The determined equilibrium constants have been used with the Rydberg-Klein-Rees method to produce potential energy curves for the four known electronic states of PtS. Isotopic shifts in electronic transition energy beyond expectations from the Born-Oppenheimer approximation were observed and treated as electronic field-shift effects due to the difference in the nuclear charge radius between Pt isotopes. The magnitude and sign of the determined field-shift parameters are rationalized through the analysis of the previously reported ab initio calculations.

2.
J Chem Phys ; 148(20): 204306, 2018 May 28.
Article in English | MEDLINE | ID: mdl-29865840

ABSTRACT

The a 4Σ--X 2Π1/2 transition of GeH has been recorded in absorption for the first time using Intracavity Laser Spectroscopy (ILS). The GeH molecules were produced in a 0.40-0.60 A DC plasma discharge inside an aluminum hollow cathode, using 500 mTorr of Ar, 100 mTorr of H2, and 200 mTorr of GeH4. This cathode is located within the resonator cavity of a Coherent Verdi™ V-10 pumped dye laser. Effective path lengths for this series of measurements using the ILS method ranged from 2 to 7 km. Spectra were calibrated using the absorption spectrum of I2 collected from an extracavity cell, the I2 transmission spectrum from Salami and Ross, J. Mol. Spectrosc. 223(1), 157 (2005) and PGOPHER's [C. M. Western, J. Quant. Spectrosc. Radiat. Transfer 186, 221-242 (2016)] calibration feature. Differences in peak positions between calibrated experimental spectra and the reference data were on average less than ±0.002 cm-1. All eight branches expected to have appreciable intensity for the transition have been identified, and isotopologue splitting was observed in features of 5 of the 8 identified rotational branches. Molecular constants have been obtained for the a 4Σ- states of 70GeH (20.84% abundant), 72GeH (27.54% abundant), and 74GeH (36.28% abundant). The transitions were fit using PGOPHER, holding the ground state constants fixed to the values reported by Towle and Brown [Mol. Phys. 78(2), 249 (1993)]. The constants for the a 4Σ- state of 74GeH determined by the fit are T0 = 16 751.5524(13) cm-1, B0 = 6.764 912(33) cm-1, D0 = 0.459 60(17) × 10-3 cm-1, λSS = 9.7453(12) cm-1, λD = 0.468(14) × 10-3 cm-1, γ = 0.077 878(84), and γS = -0.361(77) × 10-3 cm-1.

3.
J Chem Phys ; 141(13): 134310, 2014 Oct 07.
Article in English | MEDLINE | ID: mdl-25296809

ABSTRACT

The near-infrared electronic spectrum of MoO has been recorded in emission using the Fourier transform spectrometer associated with the National Solar Observatory at Kitt Peak, AZ. The gas phase MoO molecules were produced in a neon-based electric discharge using a molybdenum hollow cathode and a trace amount of oxygen. One MoO molecular band was observed in the spectrum with a red-degraded bandhead at 6735 cm(-1) and is assigned as the (0,0) band of the c (3)Π1 - a (3)Σ(-) 0+ transition. The assignment is based upon isotopologue shifts and ab initio calculations. Results from the ab initio calculations and analysis are presented. The new calculations support the assignment of the observed transition and have led to reassignment of several electronic states from previous work.

SELECTION OF CITATIONS
SEARCH DETAIL
...