Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Med Phys ; 29(10): 2438-45, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12408321

ABSTRACT

For intensity modulated radiation therapy (IMRT) dose distribution verification, multidimensional measurements are required to quantify the steep dose-gradient regions. High resolution, two-dimensional dose distributions can be measured using radiographic film. However, the photon energy response of film is known to be a function of depth, field size, and photon beam energy, potentially reducing the accuracy of dose distribution measurements. The dosimetric properties of the recently developed Kodak EDR2 film were investigated and compared to those of Kodak XV film. The dose responses of both film types to 6 MV and 18 MV photon beams were investigated for depths of 5 cm, 10 cm, and 15 cm and field sizes of 4x4 cm2 and 15x15 cm2. This analysis involved the determination of sensitometric curves for XV and EDR2 films, the determination of dose profiles from exposed XV and EDR2 films, and comparison of the film-generated dose profiles to ionization chamber measurements. For the combinations of photon beam energy, depth, and field size investigated here, our results indicate that the sensitometric curves are nearly independent of field size and depth of calibration. For a field size of 4x4 cm2, a single sensitometric curve for either EDR2 and XV film can be used for the determination of relative dose profiles. For the larger field size, the sensitometric curve for EDR2 film is superior to XV film in regions where the dose falls below 20% of the central axis dose, due to the effects that the increased low energy scattered photon contributions have on film response. The limited field size and depth dependence of sensitometric data measured using EDR2 film, along with the inherently wide linear dose-response range of EDR2 film, makes it better suited to the verification of IMRT dose distributions.


Subject(s)
Film Dosimetry/methods , Photons , Radiometry/methods , Radiotherapy/methods , X-Ray Film , Calibration , Dose-Response Relationship, Radiation , Humans , Radiotherapy Planning, Computer-Assisted/methods , Sensitivity and Specificity
2.
Int J Radiat Oncol Biol Phys ; 54(3): 963-71, 2002 Nov 01.
Article in English | MEDLINE | ID: mdl-12377351

ABSTRACT

PURPOSE: To investigate the impact of radiographic parameter and radiation technique on the volumetric dose of lung and heart for intact breast radiation. METHODS AND MATERIALS: Forty patients with both two-dimensional (2D) and computed tomographic (CT) simulations were enrolled in the study. Central lung distance (CLD), maximal heart distance (MHD), and maximal heart length (MHL) were measured under virtual simulation. Four plans were compared for each patient. Plan A used a traditional 2D tangential setup. Plan B used clinical target volume (CTV) based three-dimensional (3D) planning. Both plans C and D used a combination of a medial breast field with shallow tangents. Plan D is a further modification of plan C. RESULTS: Under the traditional tangential setup, the mean ipsilateral lung dose and volume at 20, 30, and 40 Gy correlated linearly with CLD (R = 0.85 approximately 0.91). The mean ipsilateral lung dose (Gy) approximated 4 times the CLD value (cm), whereas the percentage volume (%) of ipsilateral lung at 20, 30, and 40 Gy was about 10 times the CLD (cm). The mean heart dose and percentage volume at 20, 30, and 40 Gy correlated with MHD (R = 0.76 approximately 0.80) and MHL (R = 0.65 approximately 0.75). The mean heart dose (Gy) approximated 3 times the MHD value (cm), and the percentage volume (%) of the heart at 10, 20, 30, and 40 Gy was about 6 times MHD (cm). Radiation technique impacted lung and heart dose. The 3D tangential plan (plan B) failed to reduce the volumetric dose of lung and heart from that of the 2D plan (plan A). The medial breast techniques (plans C and D) significantly decreased the volume of lung and heart receiving high doses (30 and 40 Gy). Plan D further decreased the 20 Gy volumes. By use of the medial breast technique, the lung and heart dose were not impacted by original CLD and MHD/MHL. Therefore, the improvement from the tangential technique was more remarkable for patients with CLD >or= 3.0 cm (p < 0.001). CONCLUSIONS: The CLD and MHD impact the volumetric dose of lung and heart. The application of 3D planning for tangential breast irradiation does not decrease heart and lung dose. Adding a medial breast port significantly decreases percentage volume (PV) of lung and heart receiving high doses, especially when the CLD is excessive.


Subject(s)
Breast Neoplasms/radiotherapy , Heart , Lung , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Conformal/methods , Breast Neoplasms/diagnostic imaging , Female , Heart/anatomy & histology , Heart/diagnostic imaging , Humans , Lung/anatomy & histology , Lung/diagnostic imaging , Radiation Dosage , Tomography, X-Ray Computed
3.
Int J Radiat Oncol Biol Phys ; 52(4): 1104-10, 2002 Mar 15.
Article in English | MEDLINE | ID: mdl-11958908

ABSTRACT

PURPOSE: Positron emission tomography (PET) provides physiologic information that is not available from computed tomography (CT) or magnetic resonance studies. PET images may allow more accurate delineation of three-dimensional treatment planning target volumes of brachytherapy gynecologic (GYN) implants. This study evaluates the feasibility of using PET as the sole source of target, normal structure, and applicator delineation for intracavitary GYN implant treatment planning. MATERIALS AND METHODS: Standard Fletcher-Suit brachytherapy tandem and colpostat applicators were used for radiation delivery. After insertion of the applicator in the operating room, the patient was taken to a PET scanner, where 555 MBq (15 mCi) 18F-fluorodeoxyglucose (18F-FDG) was administered intravenously. Forty-five minutes later, three localization tubes containing 18F-FDG were inserted into the source afterloading compartments of the tandem and colpostat. A whole-pelvis scan was performed, and the images were transferred to a commercial brachytherapy three-dimensional treatment planning system. A Foley catheter was inserted into the urinary bladder while the patient was in the operating room. The regions of radioactivity in the three applicator tube image were contoured for reconstruction of the applicator, along with the bladder, rectum, and 18F-FDG-defined target volumes. A treatment plan was generated that included dose-volume histograms and three-dimensional dose distribution displays, allowing the physician an opportunity to determine if adequate target coverage and normal-tissue sparing had been obtained. For a more conservative approach, three-dimensional dose distributions and dose-volume histograms delivered with conventional source arrangements and loading could be observed. The accuracy of applicator localization from the PET images was verified using a water phantom containing two aluminum CT-compatible tandems. The PET-defined and CT scan applicator reconstructions were compared. RESULTS: Feasibility of using PET images for treatment planning of brachytherapy intracavitary GYN implants has been demonstrated. A phantom study demonstrated applicator reconstruction accuracy in the axial direction to be better than 2 mm. Reconstruction accuracy in the longitudinal direction (principally craniocaudal) was similar to the PET scanner's voxel size of 4.3 mm. CONCLUSIONS: Brachytherapy intracavitary GYN implant design has traditionally been based on patient tumor staging, palpation, and clinical experience. PET images have the potential to provide better spatial information about the relationship of tumor and normal structures to the applicator. This information can be used to optimize the delivery of radiation therapy treatments. Thus far, six patients have been scanned using this process.


Subject(s)
Brachytherapy/methods , Genital Neoplasms, Female/diagnostic imaging , Genital Neoplasms, Female/radiotherapy , Tomography, Emission-Computed , Feasibility Studies , Female , Fluorodeoxyglucose F18 , Humans , Imaging, Three-Dimensional , Physical Phenomena , Physics , Radiopharmaceuticals
4.
Semin Radiat Oncol ; 12(1 Suppl 1): 75-80, 2002 Jan.
Article in English | MEDLINE | ID: mdl-11917289

ABSTRACT

The aim of this study was to evaluate and compare the rates of grade 2 or worse late effects in patients treated for prostate cancer on Radiation Therapy Oncology Group (RTOG) 9406. The authors previously have reported the results of patients treated on the first 2 dose levels of this study with respect to grade 3 or greater late toxicity. This analysis examines the incidence of grade 2 toxicity in this study. From August 1994 to September 1999, 424 patients were entered on this dose escalation trial of 3-dimensional conformal radiation therapy (3D CRT) for localized adenocarcinoma of the prostate at doses of 68.4 Gy (level I) and 73.8 Gy (level II). All radiation prescriptions were a minimum dose to a planning target volume. Patients were stratified according to clinical stage and risk of seminal vesicle invasion based on Gleason score and presenting prostate-specific antigen. Average time at risk after completion of therapy ranged from 33.1 to 40.1 months for patients treated at dose level I and 15.6 to 34.2 months for patients at dose level II. The frequency of late effects > or = grade 2 was compared with a similar group of patients treated on RTOG studies 7506 and 7706 with adjustments made for the interval from completion of therapy. The RTOG toxicity scoring scales for late effects were used. The rate of grade 3 or greater late toxicity continues to be low compared with RTOG historical controls. No grade 4 or 5 late complications were reported in any of the 406 evaluable patients during the period of observation. Interestingly, the incidence of grade 2 late toxicity was increased relative to historical controls in all groups and dose levels. In group 1, level I and group 3, level II, the increase in grade 2 complications was statistically significant; 16 complications were observed in group 1, level I when 9.2 were expected (P =.026) and 22 were observed in group 3, level II when 7.6 were expected (P <.0001). When examining all late effects > or = grade 2, there were no significant differences in the rate of late effects in both groups and both dose levels with the exception of group 1, level II. This, in combination with the statistically significant decrease in late effects > or = grade 3, suggests that in most circumstances there has been a shift of grade 3 complications to grade 2. In group 1, dose level II there was a statistically significant reduction in > or = grade 2 late effects, suggesting there was no shift from grade 3 to grade 2 in these patients. In this circumstance there may have been a global reduction in all complications or a shift to late effects less severe than grade 2. In group 2, dose level II there is a trend (P =.085) toward this same result. It is important to continue to examine late effects closely in patients treated on RTOG 9406. The primary objective of dose escalation without an increase rate of > or = grade 3 complications has been achieved. However, the reduction in grade 3 complications may have resulted in a higher incidence of grade 2 late effects. Because grade 2 late effects may have a significant impact on a patient's quality of life, it is important to reduce these complications as much as possible. Improved conformal treatment delivery with intensity-modulated radiation therapy or the use of radioprotective agents could be considered. Clinical trials should use quality-of-life measures to determine that trade-offs between severity and rates of toxicity are acceptable to patients.


Subject(s)
Adenocarcinoma/radiotherapy , Prostatic Neoplasms/radiotherapy , Radiotherapy, Conformal , Humans , Male , Radiation Injuries , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Rectum/radiation effects , Urinary Bladder/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...