Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 25(7): 5343-5347, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36734969

ABSTRACT

Frequency-chirped microwaves decouple electron- and 13C-spins in magic-angle spinning N@C60:C60 powder, improving DNP-enhanced 13C NMR signal intensity by 12% for 7 s polarization, and 5% for 30 s polarization. This electron decoupling demonstration is a step toward utilizing N@C60 as a controllable electron-spin source for magic-angle spinning magnetic resonance experiments.

2.
Nat Commun ; 11(1): 6405, 2020 Dec 17.
Article in English | MEDLINE | ID: mdl-33335106

ABSTRACT

Atomic spins for quantum technologies need to be individually addressed and positioned with nanoscale precision. C60 fullerene cages offer a robust packaging for atomic spins, while allowing in-situ physical positioning at the nanoscale. However, achieving single-spin level readout and control of endofullerenes has so far remained elusive. In this work, we demonstrate electron paramagnetic resonance on an encapsulated nitrogen spin (14N@C60) within a C60 matrix using a single near-surface nitrogen vacancy (NV) center in diamond at 4.7 K. Exploiting the strong magnetic dipolar interaction between the NV and endofullerene electronic spins, we demonstrate radio-frequency pulse controlled Rabi oscillations and measure spin-echos on an encapsulated spin. Modeling the results using second-order perturbation theory reveals an enhanced hyperfine interaction and zero-field splitting, possibly caused by surface adsorption on diamond. These results demonstrate the first step towards controlling single endofullerenes, and possibly building large-scale endofullerene quantum machines, which can be scaled using standard positioning or self-assembly methods.

3.
Phys Chem Chem Phys ; 20(16): 11418-11429, 2018 Apr 25.
Article in English | MEDLINE | ID: mdl-29645035

ABSTRACT

Dynamic nuclear polarization (DNP) can be applied to enhance the sensitivity of solid-state NMR experiments by several orders of magnitude due to microwave-driven transfer of spin polarization from unpaired electrons to nuclei. While the underlying quantum mechanical aspects are sufficiently well understood on a microscopic level, the exact description of the large-scale spin dynamics, usually involving hundreds to thousands of nuclear spins per electron, is still lacking consensus. Generally, it is assumed that nuclear hyperpolarization can only be observed on nuclei which do not experience strong influence of the unpaired electrons and thus being significantly removed from the paramagnetic polarizing agents. At the same time, sufficiently strong hyperfine interaction is required for DNP transfer. Therefore, efficient nuclear spin diffusion from the strongly-interacting nuclei to the NMR-observable bulk is considered to be essential for efficient nuclear hyperpolarization. Based on experimental results obtained on the endohedral fullerene N@C60 as a polarizing agent sparsely diluted in C60, we discuss the effect of the spin-diffusion barrier. We introduce electron-driven spin diffusion (EDSD) as a novel mechanism for nuclear polarization transfer in the proximity of an electron spin which is particularly relevant under magic-angle spinning (MAS) DNP conditions.

4.
J Magn Reson ; 289: 45-54, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29471275

ABSTRACT

We describe a frequency-agile gyrotron which can generate frequency-chirped microwave pulses. An arbitrary waveform generator (AWG) within the NMR spectrometer controls the microwave frequency, enabling synchronized pulsed control of both electron and nuclear spins. We demonstrate that the acceleration of emitted electrons, and thus the microwave frequency, can be quickly changed by varying the anode voltage. This strategy results in much faster frequency response than can be achieved by changing the potential of the electron emitter, and does not require a custom triode electron gun. The gyrotron frequency can be swept with a rate of 20 MHz/µs over a 670 MHz bandwidth in a static magnetic field. We have already implemented time-domain electron decoupling with dynamic nuclear polarization (DNP) magic angle spinning (MAS) with this device. In this contribution, we show frequency-swept DNP enhancement profiles recorded without changing the NMR magnet or probe. The profile of endofullerenes exhibits a DNP profile with a <10 MHz linewidth, indicating that the device also has sufficient frequency stability, and therefore phase stability, to implement pulsed DNP mechanisms such as the frequency-swept solid effect. We describe schematics of the mechanical and vacuum construction of the device which includes a novel flanged sapphire window assembly. Finally, we discuss how commercially available continuous-wave gyrotrons can potentially be converted into similar frequency-agile high-power microwave sources.

5.
Phys Rev Lett ; 106(3): 030802, 2011 Jan 21.
Article in English | MEDLINE | ID: mdl-21405264

ABSTRACT

The Zeeman splitting of a localized single spin can be used to construct a highly sensitive magnetometer offering almost atomic spatial resolution. While sub-µT sensitivity can be obtained in principle using pulsed techniques and long measurement times, a fast and easy method without laborious data postprocessing is desirable for a scanning-probe approach with high spatial resolution. In order to measure the resonance frequency in real time, we applied a field-frequency lock to the optically detected magnetic resonance signal of a single electron spin in a nanodiamond. We achieved a sampling rate of up to 100 readings per sec with a sensitivity of 6 µT/sqrt[Hz]. Images of the field distribution around a magnetic wire were acquired with ∼30 µT resolution and 4096 submicron sized pixels in 10 min. The response of several spins was used to reconstruct the field orientation.

6.
Phys Rev Lett ; 105(4): 040504, 2010 Jul 23.
Article in English | MEDLINE | ID: mdl-20867828

ABSTRACT

The nitrogen-vacancy defect center (N-V center) is a promising candidate for quantum information processing due to the possibility of coherent manipulation of individual spins in the absence of the cryogenic requirement. We report a room-temperature implementation of the Deutsch-Jozsa algorithm by encoding both a qubit and an auxiliary state in the electron spin of a single N-V center. By thus exploiting the specific S=1 character of the spin system, we demonstrate how even scarce quantum resources can be used for test-bed experiments on the way towards a large-scale quantum computing architecture.

7.
Phys Chem Chem Phys ; 12(23): 5998-6007, 2010 Jun 21.
Article in English | MEDLINE | ID: mdl-20372729

ABSTRACT

Diffusion in porous media is a general subject that involves many fields of research, such as chemistry (e.g. porous catalytic pallets), biology (e.g. porous cellular organelles), and materials science (e.g. porous polymer matrixes for controlled-release and gas-storage materials). Pulsed-gradient spin-echo nuclear magnetic resonance (PGSE NMR) is a powerful technique that is often employed to characterize complex diffusion patterns inside porous media. Typically it measures the motion of at least approximately 10(15) molecules occurring in the milliseconds-to-seconds time scale, which can be used to characterize diffusion in porous media with features of approximately 2-3 mum and above (in common aqueous environments). Electron Spin Resonance (ESR), which operates in the nanoseconds-to-microseconds time scale with much better spin sensitivity, can in principle be employed to measure complex diffusion patterns in porous media with much finer features (down to approximately 10 nm). However, up to now, severe technical constraints precluded the adaptation of PGSE ESR to porous media research. In this work we demonstrate for the first time the use of PGSE ESR in the characterization of molecular restricted diffusion in common liquid solutions embedded in a model system for porous media made of sub-micron glass spheres. A unique ESR resonator, efficient gradient coils and fast gradient current drivers enable these measurements. This work can be further extended in the future to many applications that involve dynamical processes occurring in porous media with features in the deep sub-micron range down to true nanometric length scales.


Subject(s)
Electron Spin Resonance Spectroscopy , Diffusion , Fullerenes/chemistry , Magnetic Resonance Spectroscopy , Porosity , Time Factors , Trityl Compounds/chemistry
8.
Phys Chem Chem Phys ; 11(31): 6689-99, 2009 Aug 21.
Article in English | MEDLINE | ID: mdl-19639142

ABSTRACT

Electron spin resonance microcopy (ESRM) is an imaging method aimed at the observation of paramagnetic species in small samples with micron-scale spatial resolution. At present, this technique is pursued mainly for biological applications at room temperature and in relatively low static magnetic fields. This work is focused on the use of ESRM for the measurement of solid samples. First, a brief comparison of various electron spin resonance (ESR) detection techniques is provided, with an emphasis on conventional "induction detection". Following that, some methodological details are provided along with experimental examples carried out at room temperature and in a static field of approximately 0.5 T. These examples show for the first time the imaging of solid samples measured by "induction detection" ESR with a resolution better than 1 mum. Based on these experimental examples and capabilities, an outlook for the future prospects of this methodology in terms of spin sensitivity and resolution is provided. It is estimated that single-spin sensitivity could be achieved for some samples at liquid-helium temperatures and static fields of approximately 2 T. Furthermore, under these conditions, spatial resolution could reach the nanometer scale. Finally, a description of possible applications of this new methodology is provided.

9.
Nat Mater ; 7(11): 884-9, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18931670

ABSTRACT

The manipulation of single magnetic molecules may enable new strategies for high-density information storage and quantum-state control. However, progress in these areas depends on developing techniques for addressing individual molecules and controlling their spin. Here, we report success in making electrical contact to individual magnetic N@C(60) molecules and measuring spin excitations in their electron tunnelling spectra. We verify that the molecules remain magnetic by observing a transition as a function of magnetic field that changes the spin quantum number and also the existence of non-equilibrium tunnelling originating from low-energy excited states. From the tunnelling spectra, we identify the charge and spin states of the molecule. The measured spectra can be reproduced theoretically by accounting for the exchange interaction between the nitrogen spin and electron(s) on the C(60) cage.

10.
Chemistry ; 8(22): 5079-83, 2002 Nov 15.
Article in English | MEDLINE | ID: mdl-12412058

ABSTRACT

We describe the HPLC separation and identification of N@C60 and N2@C60. These species were observed after eleven sequential HPLC separations. Their retention times are in the same range as those of the other noninteractive endohedral species of C60, such as noble gas endohedral C60. The separation factors of these endohedrals were evaluated by using a mixture of hexane/toluene as eluent. We note that this is the first evidence for the N2@C60 molecule existing in the form of endohedral C60 complex.

SELECTION OF CITATIONS
SEARCH DETAIL
...