Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Icarus ; 376: 114840, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35140451

ABSTRACT

Magnetic investigations of icy moons have provided some of the most compelling evidence available confirming the presence of subsurface, liquid water oceans. In the exploration of ocean moons, especially Europa, there is a need for mathematical models capable of predicting the magnetic fields induced under a variety of conditions, including in the case of asymmetric oceans. Existing models are limited to either spherical symmetry or assume an ocean with infinite conductivity. In this work, we use a perturbation method to derive a semi-analytic result capable of determining the induced magnetic moments for an arbitrary layered body, provided each layer is nearly spherical. Crucially, we find that degree-2 tidal deformation results in changes to the induced dipole moments. We demonstrate application of our results to models of plausible asymmetry from the literature within the oceans of Europa and Miranda and the ionospheres of Callisto and Triton. For the models we consider, we find that in the asymmetric case, the induced magnetic field differs by more than 2 nT near the surface of Europa, 0.25-0.5 nT at 1 R above Miranda and Triton, and is essentially unchanged for Callisto. For Miranda and Triton, this difference is as much as 20%-30% of the induced field magnitude. If measurements near the moons can be made precisely to better than a few tenths of a nT, these values may be used by future spacecraft investigations to characterize asymmetry within the interior of icy moons.

2.
Icarus ; 354: 114020, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-35136245

ABSTRACT

The five largest planets all have strong intrinsic magnetic fields that interact with their satellites, many of which contain electrically conducting materials on global scales. Conducting bodies exposed to time-varying magnetic fields induce secondary magnetic fields from movement of eddy currents. In the case of spherically symmetric conducting bodies, matching magnetic solutions at the boundary results in relatively simple relations between the excitation field and the induced field. In this work, we determine the more complicated induced magnetic field from a near-spherical conductor, where the outer boundary is expanded in spherical harmonics. Under the approximations that the excitation field is uniform at a single frequency, the product of wavenumber and radius for the body is large, and the average radius of the body is large compared to the perturbation from spherical symmetry, we find that each spherical harmonic in the shape expansion induces discrete magnetic moments that are independent from the other harmonics in the expansion. That is, simple superposition applies to the magnetic moments induced by each perturbation harmonic. We present a table of the magnetic moments induced by each spherical harmonic up to degree 2 in the perturbed shape. We also present a simple formula by which the induced magnetic field may be evaluated for any arbitrary shape described by expanding the radius of the conducting body in spherical harmonics. Unlike the Earth, many moons in the Solar System are tidally locked to their parent bodies, and many also contain saline, subsurface oceans. Conductive material in these moons is therefore expected to be non-spherical. Accounting for the boundary shape of Europa's ocean will be critical for interpretation of Europa Clipper magnetic measurements near the moon, where the effects of quadrupole-and-higher magnetic moments will be most apparent. The results of this work permit magnetic studies considering non-spherical oceans of satellites for the first time.

3.
Astrobiology ; 19(5): 696-708, 2019 05.
Article in English | MEDLINE | ID: mdl-31046417

ABSTRACT

This article describes a multifaceted approach to delivering results from current research in astrobiology to visitors at Pacific Science Center, along with the evaluated results of the impact of the work. Content was delivered by (1) training scientists to communicate effectively with the public, (2) providing the trained scientists with venues to engage with the public, and (3) creating two Science on Sphere shows that highlight key tenants scientists are investigating, a hands-on activity to facilitate interactive learning, and a temporary exhibit that highlights current research on the topic. Evaluation of visitors who engaged with each element demonstrates that the content had a large impact on both the increase in knowledge of the visitors and the increase of interest in the topic.


Subject(s)
Exobiology/organization & administration , Information Dissemination/methods , Intersectoral Collaboration , Simulation Training , Exobiology/education , Exobiology/trends , Informal Sector
SELECTION OF CITATIONS
SEARCH DETAIL
...