Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Calcif Tissue Int ; 109(6): 615-625, 2021 12.
Article in English | MEDLINE | ID: mdl-34331548

ABSTRACT

Fibrodysplasia ossificans progressiva (FOP) is an ultra-rare genetic disorder that leads to heterotopic ossification (HO), resulting in progressive restriction of physical function. In this study, low-dose, whole-body computed tomography (WBCT) and dual energy X-ray absorptiometry (DXA) were evaluated to determine the preferred method for assessing total body burden of HO in patients with FOP. This was a non-interventional, two-part natural history study in patients with FOP (NCT02322255; date of registration: December 2014). In Part A (described here), WBCT and DXA scans were individually assessed for HO presence and severity across 15 anatomical regions. All images were independently reviewed by an expert imaging panel. Ten adult patients were enrolled across four sites. The sensitivity to HO presence and severity varied considerably between the two imaging modalities, with WBCT demonstrating HO in more body regions than DXA (76/138 [55%] versus 47/113 [42%]) evaluable regions). Inability to evaluate HO presence, due to overlapping body regions (positional ambiguity), occurred less frequently by WBCT than by DXA (mean number of non-evaluable regions per scan 1.2 [standard deviation: 1.5] versus 2.4 [1.4]). Based on the increased sensitivity and decreased positional ambiguity of low-dose WBCT versus DXA in measuring HO in patients with FOP, low-dose WBCT was chosen as the preferred imaging for measuring HO. Therefore, low-dose WBCT was carried forward to Part B of the natural history study, which evaluated disease progression over 36 months in a larger population of patients with FOP.


Subject(s)
Myositis Ossificans , Ossification, Heterotopic , Absorptiometry, Photon , Adult , Disease Progression , Humans , Myositis Ossificans/diagnostic imaging , Ossification, Heterotopic/diagnostic imaging , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...